
THE JEWEL
V IRTUAL MACHINE

Comprehensive Reference

Rodrigo Augusto Barbato Ferreira
rodrigo.ferreira@jewelvm.com

march 2001

mailto:rodrigo.ferreira@jewelvm.com

Copyright c© 1998–2001, Rodrigo Augusto Barbato Ferreira.
All rights reserved.

Contents

1 Overview 1
1.1 The Scenario . 1
1.2 Our Goal . 2
1.3 Road Map . 2

2 Related Work 3
2.1 Approaches to the Java Runtime Environment 3
2.2 High-End Machines and Native Compilers 5
2.3 Best of All Worlds . 9

3 Virtual Machine Design 13
3.1 A JVM Architecture . 13
3.2 Software Components . 13

3.2.1 Client JVM . 13
3.2.2 Server JVM . 15
3.2.3 Client JVM Generator . 15

3.3 Functional Overview . 16

4 Server-Side Context Identification 19
4.1 States & Phases . 19
4.2 Computing Class Versions . 20
4.3 Dealing with Class Loaders . 21

4.3.1 Extended Loader-Based Class Names 22
4.3.2 Type Uncertainty and Interfaces . 23

4.4 A Portable Way of Describing Sizes and Offsets 24
4.5 Describing Each Phase . 24

4.5.1 REGISTERPhase . 25
4.5.2 LOAD Phase . 25
4.5.3 META Phase . 27
4.5.4 CONTEXT Phase . 28
4.5.5 LINK Phase . 29
4.5.6 RELINK Phase (Not Implemented) 30
4.5.7 TRANSLATE Phase . 31

i

ii CONTENTS

5 Efficient Bytecode Verification 33
5.1 Symbolic Bytecode Verification . 33
5.2 Parsing the Class File . 34
5.3 Checking Static Constraints . 34
5.4 Checking Structural Constraints . 35
5.5 Verification Example . 40
5.6 What is Required to Go Further . 46

6 Bytecode Conversion 49
6.1 Intermediate Representation Presentation 50
6.2 Conversion Examples . 51

6.2.1 Constants, Local Variables, and Control Constructs 51
6.2.2 Arithmetic . 54
6.2.3 More Control Examples . 55
6.2.4 Receiving Arguments . 58
6.2.5 Invoking Methods . 60
6.2.6 Working with Class Instances . 63
6.2.7 Arrays . 67
6.2.8 Compiling Switches . 70
6.2.9 Operations on the Operand Stack 72
6.2.10 Throwing and Handling Exceptions 73
6.2.11 Compiling Finally . 78
6.2.12 Synchronization . 82

6.3 Exception Windows Conversion . 83
6.4 Subroutine Conversion . 85
6.5 Post Conversion Optimizations . 86

6.5.1 Building Expression Trees . 86
6.5.2 Eliminating Null Checks . 87
6.5.3 Factoring Exception Throwing Code 89
6.5.4 Control Optimizations . 91

6.6 Discussion about Assynchronous Exceptions 92

7 The x86 Back-End 95
7.1 Code Generation . 95

7.1.1 Stack Frame and Registers Usage Protocol 95
7.1.2 Local Variable Binding . 97
7.1.3 Instruction Selection . 98

7.2 Cooperative Runtime Support . 99
7.2.1 Live Frame References and Stack Tracing Tables 99
7.2.2 Exception Catching Routine . 102
7.2.3 Method Text Reference Table . 104

7.3 Relocation and Patch Tables . 105
7.3.1 Relocation Table . 105
7.3.2 Runtime Callback Patch Table . 105

CONTENTS iii

7.3.3 Method Text Patch Table . 107
7.3.4 String Literal Patch Table . 108
7.3.5 Meta Class Patch Table . 109

7.4 Back-End Improvements . 109

8 Runtime Environment 111
8.1 Heap Structures . 111

8.1.1 Ordinary Objects . 112
8.1.2 Array Objects . 112
8.1.3 Method Text Objects . 113
8.1.4 Meta Class Objects . 114
8.1.5 Free Cells . 116
8.1.6 Block Records . 117

8.2 Allocator Implementation . 117
8.2.1 GC Info Word . 117
8.2.2 Allocation Procedure . 119
8.2.3 Deallocation Procedure . 121
8.2.4 Heap Traversal Procedure . 123

8.3 Thread Stacks . 124
8.3.1 Stack Organization . 124
8.3.2 Stack Traversal Procedure . 124
8.3.3 Stack Overflow Detection . 126

8.4 Monitor Implementation . 127
8.5 JNI Implementation . 128
8.6 JVMDI and JVMPI Support . 129

9 The Garbage Collector 131
9.1 Desired Features . 131
9.2 Runtime Requirements . 132
9.3 Implementation Details . 132
9.4 Future Improvements . 137

10 Automatic Machine Generation 139
10.1 Static Heap Image . 139
10.2 Machine Generation Configurations . 140
10.3 Machine Generator Functionality . 141
10.4 Heap Initialization Procedure . 142

11 Conclusions 143

A Intermediate Representation Specification 145
A.1 Grammar . 145
A.2 Opcodes . 149

iv CONTENTS

B Yet Another Tree Rewriting Tool 187
B.1 Specifications . 187
B.2 Implementation . 192
B.3 RING Extensions . 197

B.3.1 Default Rules . 197
B.3.2 Non-Terminal Templates . 198
B.3.3 Non-Terminal Inlining . 200

Chapter 1

Overview

Just-In-Timecompilation, also known asJIT, is a well-known technique used to improve
the execution time in theJava1 Virtual Machine(JVM). However, the amount of time, and
sometimes memory, used by the JIT internals, in many cases, degrades the application exe-
cution time. Some techniques have been used to decrease the JIT overhead while keeping its
effectiveness[MMBC97, KG97]. Some of these techniques make use of heuristics to detect
executionhot spotsand produce quality code for them[Sun98]. Other techniques try to focus
on providing faster algorithms only for gain-proven compiler tasks[YMP+99]. However, the
trade-off between the JIT running time and its object code execution time will always exist.
There is no silver bullet.

1.1 The Scenario

From our observation, an end-user Java Virtual Machine deals with the same code most of its
time. Users always launch the same applications which are typically composed of the same
set of classes. That repetitive situation does not change until the user buys an upgrade of the
software he has been using. Also, theJava Platform API[GYT96a, GYT96b] is a huge slice
of the code being executed by every application, and it only changes on aJVM release basis.
So, why does the JIT need to recompile all those classes, over and over, on every JVM start
up? Surely, the dynamics of the JVM linking model — withclass loadersand a fine-grained
linking unit — makes it difficult for the JIT to catch and cache complex contexts.

On the other hand, in big companies, dozens, or even hundreds of employees share the
same application or application suite. Usually, they are connected under the same fast and
secureIntranet. Why not hoist the JIT to a server, building a shared repository of compiled
code? Thus not only users will get the common case fast, but they will also make the common
case fast for other users.

In this scenario, depicted on Figure 1.1, the company will not have to buy powerful hard-
ware for each employee. Instead, the company makes a rational investment on the JIT server
machine. Even if the employee runs a poor machine, he will get optimized native code — at

1Java is a registered trademark of Sun Microsystems, Inc.

1

2 OVERVIEW

context
binary code

User Machines

JIT Server

Secure Channels

Figure 1.1: A shared JIT server.

the expense of waiting for its compilation on a fast server in the worst case. This istrue2 Java
technology being delivered on standard hardware.

This approach can be extended to the wholeInternet once JIT servers are trusted and
connections made over secure sockets.

1.2 Our Goal

It is our believe that the Java platform shines on its portability. However, its machine-independent
bytecodeis not well suited for execution on most real-world processors. That fact, in conjunc-
tion with the security model and philosophy adopted by the Java platform, makes the JVM
a heavy piece of software. Our effort is not to criticize the Java platform design, but to ask
ourselves how we can achieve a straight-on-business light-weight implementation of it.

Our goal is to detach linking activities from the JVM to a shared server, on a distributed
fashion. The client JVM turns to be a very simple piece of software that runs Java code
natively, not requiring a JIT or interpreter. All complex linking activities — like link-time
error checking,class fileverification and JIT compilation — are done by the server, which
caches its responses. The software is designed in a way that bothstandalone(built-in server)
and distributed models could be achieved.

1.3 Road Map

The work herein described addresses all the issues discussed so far. Each chapter provides
insight and details of every construction stage of aJava 2JVM implementation.

This document is organized as follows: In Chapter 2, thestate-of-the-arton JVM imple-
mentation is presented. In Chapter 3, the design possibilities of a distributed JVM architecture
are discussed. In Chapter 4, we give details about the context identification techniques we

2In the sense of a JVM, not a native compiler.

ROAD MAP 3

have adopted, as well as the solutions to problems arisen during their implementation. In
Chapter 5, an efficient bytecode verification algorithm is described as a replacement for the
standard algorithm. In Chapter 6, we introduce theintermediate representationand describe
how to convert bytecode to it. In Chapter 7, we describe the platform-independent back-end
for the Intel Architecture 32-bitfamily of processors. In Chapter 8, we give implementation
details about theruntime environment, including data layout on heap and stack. In Chap-
ter 9, we describe thegarbage collectionalgorithm we have implemented. In Chapter 10,
the mechanics of automatic virtual machine generation is exposed. Finally, we present the
conclusions in Chapter 11.

Two appendices are provided as additional information to the reader. In Appendix A, we
give a complete specification of the intermediate language. In Appendix B, we describe the
tree rewriting tool that we developed targeting theJava Programming Language[AG00].

Chapter 2

Related Work

This chapter presents thestate-of-the-artonJava Runtimeimplementation. First, we describe
the most used techniques to implement theJava Language Runtime. They range from inter-
preters to native compilers, passing through mixed execution engines and JIT tricks. Second,
we present bleeding edgeJava Runtimeimplementations from various vendors. Finally, we
discuss the goals of our work and how they fit into the whole picture.

2.1 Approaches to the Java Runtime Environment

There are basically two implementation approaches to theJava Language Runtime Environ-
ment: native “static” compilers[FKR+99, PTB+97] andvirtual machines[KG97, YMP+99].

A native compiler performs platform-dependent translation fromJava bytecodesto ma-
chine language. Since the translation occurs before execution, native compilers cannot take
advantage of run-time information. That is why native compilation is also referenced to as
static compilation1. Native compilation is a Java adaptation of the standard compilation ap-
proach present in the C/C++ world. Native compilers differ from virtual machines in the
sense that they are unable to efficiently handle bytecode loadedon-the-fly. While virtual ma-
chines usually have an interpreter orJust-In-Time(JIT) compiler to do that job, most native
compilers don’t. Therefore, native compilers only provide limited support forclass load-
ers2. Native compilers usually lack some other Java features like reflective programming and
built-in object serialization, but that is not a must. Although some virtual machines provide
native embedding of core class libraries, the difference from native compilers is the fact that
on native compilers user classes are included on preliminary compilation. The intense usage
of Java native compilers is due to the belief that they provide faster execution. This is true
nowadays, since native compilation time is not a constraint, but will not hold on a near future,
once virtual machine technology matures. Vendors claim that native compilers protects in-
tellectual property since reverse engineering compiled code is considerably harder. However,
bytecode obfuscators can address this matter while still keeping its portability. Usually, native

1The technique is also known asWay Ahead of Time (WAT)compilation.
2Some implementations have no support for dynamic class loading at all. Others let applications load classes

known at compile time.

5

6 RELATED WORK

compilation is used for deployment of large scale or mission-critical Java systems.

A virtual machine can be seen as a feature-unconstrainedJava Language Runtimeimple-
mentation. Virtual machines provide a bytecode execution-engine, which is usually an inter-
preter or JIT compiler[Yel96]. Some virtual machines use a mixed execution model, where
bytecode known at virtual machine compile time is translated to machine language and cou-
pled with the bytecode execution-engine provided by the implementation. High-end virtual
machines use advanced JIT techniques and other methods to achieve performance.

Preliminary implementations of the Java Virtual Machine made use of bytecode interpre-
tation as the only execution mechanism. Literal bytecode interpreters are slow, since bytecode
semantics require link-time and run-time checks. The first effort to remove extra bytecode
checks during interpretation resulted in a simple rewriting technique[LY96,§9.1]. This tech-
nique replaces bytecode opcodes byquick opcodes[LY96, §9.2] after first execution. Quick
opcodes are free of link-time checks, since they will only execute when linkage actions are
guaranteed to take place. Interpretation has been proven to constrain performance horizons,
and it is a barrier to the Java technology.

Just-In-Time compilation is a technique incorporated by the Java Virtual Machine to ad-
dress performance issues. JIT compilers have been used in language runtime implementations
of symbolic systems for many years. In the Java Virtual Machine, the JIT is used to trans-
late bytecodes to machine language in a method basis. After the first interpreted execution,
subsequent method calls are faster since they executed natively. The main task of a Java JIT
compiler is to remove redundant run-time checks[Ste96, MMS98]. Also the JIT must produce
as good as possible machine code. However, JIT compilation is constrained on time because
it occurs during application execution. So there is atrade-off between JIT compilation time
and object code execution time.

A technique used to decrease JIT compilation time, while not sacrificing object code exe-
cution time, isAware JIT[Aze99] compilation. Aware JIT compilation consists of an off-line
bytecode preprocessing, which performs expensive analyses and optimizations. The informa-
tion gathered is annotated in the bytecode. By doing that, the Aware JIT wastes less time
during translation, since most of the information required to generate code is already present
in the annotated bytecode. The Aware JIT technique has been proven to be effective when
doing register allocation for RISC architectures and removing extra null pointer and array
bounds checks. The major problem with the Aware JIT approach is security. The information
annotated on the bytecode is usually trusted by the Aware JIT. This represents a real security
hole since malicious modifications on the annotated information can produce serious hazard.
Verification of annotated information could be a possibility if it were not as expensive as the
computation itself.

Another technique present in the current generation of virtual machines[Sun98] isadap-
tative optimization. This technique has considerably improved performance in dynamic typed
languages, likeSmalltalk[GRI83] andSelf[CUL91]. The idea behind adaptative optimization
is based on the fact that a computer program spends most of its execution time in small portions
of its code, the so calledhot-spots. JIT compilers should give special attention to hot-spots
and let the other portions of the program be interpreted. An adaptative optimization execu-
tion engine must have profiler support embedded in its interpreter, and a hot-spot detection

HIGH-END MACHINES AND NATIVE COMPILERS 7

algorithm. The major problem with the adaptative optimization approach is the performance
penalty for short-lived applications. Unfortunately, hot-spots are only noticeable after the ap-
plication is running for a while, and starts to repeat itself. This technique is appropriate for
server applications and extensions.

Another attempt to improve the performance of JIT compilers is code caching. The idea
behind code caching is to identify repetitive situations and use code generated by the JIT com-
piler in previous executions. This saves JIT time on cache hits, and encourages the JIT to
apply aggressive optimizations since the output code is likely to be reused. To the best of our
knowledge no production JVM supports persistent caching of JIT produced code (by Decem-
ber/2000). Some systems provide one time JVM loading, meaning that the code produced by
the JIT is compiled once at least for the API classes. However, this cannot be considered a
true caching scheme since the JVM must stay loaded, wasting primary memory, and it cannot
save the context to be used in a subsequent loading. There are many pratical problems when
trying to identify and cache a repetitive context in the Java Virtual Machine. The main source
of problems is the runtime typing model of the JVM.

2.2 High-End Machines and Native Compilers

This section provides an overview about major performance-aware implementations of the
Java Runtime Environment: JVMs, native compilers and JITs. Each software description is a
summary based on technical information available online and publications.

Sun Microsystems’ Java 2 SDK

TheJava 2 Platform SDK, Standard Edition(J2SE) is a feature-complete development and de-
ployment platform. J2SE is the standard Java implementation fromSun Microsystems, which
includes a Java Virtual Machine and related libraries. J2SE JVM incorporates Sun’s propri-
etary adaptative optimizationtechnology known asHotSpot[Sun98]. HotSpot provides an
optimizing JIT compiler, profiler based hot-spot detection heuristics, dynamic deoptimiza-
tion capabilities (to handle earlier optimizations invalidated by code loaded on-the-fly), and
an accurate generational garbage collection algorithm[Ung84]. Currently, it is available on
Windows, Solaris and Linux platforms.

URL: http://www.javasoft.com/

Kaffe

Kaffe is a complete, fully compliant open source Java environment. It comes with its own
standard class libraries, native libraries, and a highly configurable virtual machine with a just-
in-time and native compiler. Kaffe was designed with portability and scalability in mind.
Its threading model allows the choice between an internal, Java-specific user-level threading
system, and a native kernel-level threading system for platforms where this is available. Kaffe
has its own heap management system with a mark-and-sweep garbage collector. It provides

http://www.javasoft.com/

8 RELATED WORK

the ability to replace the garbage collection algorithm with one that may be more appropriate to
the application: reference counting, generational or copying. An interesting feature of Kaffe is
the execution engine, which comes in three different flavors: interpreter, just-in-time compiler
and native compiler. The interpreter is smaller and easier to port, but is significantly slower
when executing code. The JIT requires a layer of macros to be written, containing the actual
assembler instructions. This allows bytecodes to be translated to native code “on-demand”.
The native compiler allows java code to be compiled ahead of time directly to native code.

URL: http://www.kaffe.org/

LaTTe

LaTTe[YMP+99] is a Java Virtual Machine created by theMASS (Microprocessor Architec-
ture and System Software) Laboratory of the School of Electrical Engineering at Seoul Na-
tional University, as a joint work with theVLIW Research Group at IBM T.J. Watson Research
Center. It includes a novel JIT compiler targeted toRISCmachines, specifically theUltra-
SPARC. The JIT compiler generates quality RISC code through a clever mapping of Java
stack operands to registers with a negligible overhead. Additionally, the runtime components
of LaTTe, including thread synchronization, exception handling, and garbage collection, are
optimized. As a result, the performance of LaTTe is competitive with that of other production
JVMs. LaTTe was initially developed based onKaffevirtual machine, but most parts of the
JVM, including the JIT compiler, the garbage collector, monitor lock handling, and exception
handling, have been replaced by clean room implementations.

URL: http://latte.snu.ac.kr/

JRockit

JRockitclaims to be the fastest and most scalable JVM for server applications. Similar to
Sun Microsystems’ HotSpot technology, JRockit uses adaptative optimization to improve ex-
ecution performance. It provides several different garbage collection policies: stop and copy,
generational, “train based” incremental. JRockit usesThin Threads, a better implementation
of Java threads which allocates no more native threads than available machine processors.
Each native thread executes one or more Java threads. Context switch and scheduling are
done internally by the runtime. The Thin Threads model takes up less memory and is much
faster.

URL: http://www.jrockit.com/

TowerJ

TowerJconsists of a native compiler and a runtime that optionally includes a dynamic linker
and a bytecode interpreter. TowerJ takes bytecode as input and produces an optimized func-
tionally equivalent self-contained executable program. It delivers a Java application deploy-
ment solution that provides native compilation benefits while preserving the flexibility of

http://www.kaffe.org/
http://latte.snu.ac.kr/
http://www.jrockit.com/

HIGH-END MACHINES AND NATIVE COMPILERS 9

Java’s dynamic capabilities. TowerJ is based onTower’s proprietaryTRIPLE CROWNtech-
nology, which has been evolving since the early 1990s. TRIPLE CROWN technology was de-
veloped while looking for ways to significantly improve the performance of advanced object-
oriented programming languages. It was originally implemented forEiffel[Mey91] and due to
the similarities of Eiffel and Java, the migration of TRIPLE CROWN was straightforward. The
TRIPLE CROWN Runtime/VM is currently supported on Hewlett-Packard HP-UX, Compaq
Tru64 Unix and NT/Alpha, Microsoft Windows NT, Sun Solaris, IBM AIX, Silicon Graphics
IRIX, and Linux.

URL: http://www.towerj.com/

JET

JET[Les99] compiles Java applications into nativeWin32executables. JET is the firstEx-
celsior project that employs theirXNJ technology. XNJ (XDS Native Java) is based on the
XDS multi-target optimizing compiler construction framework. The XDS framework sup-
ports generation of highly optimized native code for several widely used CPU architectures,
such as Intel x86, Motorola M680x0, PowerPC, and Sun SPARC (and also generation of
C/C++ source code). The core of the framework defines classes for internal representation
(IR) of the program. As usual, the XDS framework has three major components: front-end,
IR transformer (or middle-end) and back-end. The middle-end and back-end components sup-
port various optimization techniques commonly used in “classical” compilers[ASU86,§10].
Among them are: global inline substitution of methods[Muc97,§15], common subexpres-
sions elimination[Coc70], constant propagation, loop unrolling[Mor98,§9.7], redundant run
time checks removal[Ste96, MMS98], advanced register allocation algorithms[CAC+81] and
instruction scheduling[Mor98,§12]. Some object-oriented optimizations are also available:
type inference[CU90] and stack allocation[GS99].Static Single Assignment[CFR+91] (SSA)
is used in internal program representation greatly improving the quality of these optimiza-
tions. JET has a non-concurrent mark-compact garbage collection algorithm that possesses
advantages of both mark-and-sweep and copying garbage collection algorithms. It is accurate
and causes less memory fragmentation than traditional mark-and-sweep algorithms.

URL: http://www.excelsior-usa.com/

JOVE

JOVE is an optimizing native compiler for large-scale Java applications. JOVE combines
sophisticated whole-program and object-oriented optimization technologies, native compila-
tion, and a scalable runtime architecture. The runtime system includes precise multi-threaded
multi-generational garbage collection, native threading, low overhead polymorphism, and a
great number of minor optimizations. Object oriented optimizations include selective method
inclusion, type analysis, polymorphic call-site reduction, and selective generation of reflec-
tive metadata. At this time, JOVE only targets theIntel 32-bit family of processors running
Windows.

http://www.towerj.com/
http://www.excelsior-usa.com/

10 RELATED WORK

URL: http://www.instantiations.com/

IBM High Performance Compiler

TheIBM High Performance Compiler[IBM98] (IBM-HPC) is an optimizing native code com-
piler for Java. Currently, there are beta-level versions for bothAIX andWindows. Bytecodes
are processed by a translator to produce an internal compiler intermediate language (IL) rep-
resentation of each class. The common back-end fromIBM’s XL family of compilers for the
RS/6000is then used to turn this intermediate representation into an object module (.o file)
which is linked with other object modules from the application and libraries to produce an
executable program. The libraries implement garbage collection, the Java Platform API, and
various system routines to support object creation, threads, exception handling, application
startup and termination. The use of a common back-end grants high-quality, robust code opti-
mization capabilities. However, it also dictates the use a conservative garbage collector since
the back-end provides no special support for garbage collection. It uses the publicly available
Boehm[BW88] conservative garbage collector, which has been ported to many platforms.
Code optimizations include instruction scheduling, common subexpression elimination, intra-
module inlining, constant propagation, global register allocation. Java specific optimizations,
like run time checking removal, are done during IL translation.

URL: http://www.alphaworks.ibm.com/

BulletTrain

BulletTrain is a system for statically compiling and linking JVM bytecode applications for
Windowsplatforms. It includes an optimizing native compiler, a linker and recompilation
manager, an advanced thread-hot runtime, and a core set of Java 2 optimized libraries. The
crafting of the runtime system to the needs of the Java language provides high-speed locking,
class casts, memory allocation, plus support for thousands of threads and smooth scaling onto
multiprocessors. In addition, BulletTrain provides tools for observing the behavior of pro-
grams. Heap use can be categorized by object type and thread deadlocks can be automatically
detected. JNI (Java Native Interface) operations are always checked for correct parameters
and stack traces always contain line numbers.

URL: http://www.naturalbridge.com/

GNU Compiler for Java

TheGNU Compiler for Java[Bot97] (GCJ) is a portable, optimizing, native compiler for the
Java Programming Language. GCJ is part of the widely knownGNU Compiler Collection
(GCC). It compiles Java, in both source code and bytecode forms, to machine code. GCJ pro-
vides a set of auxiliary libraries which consist of the Java Platform API core classes, garbage
collector, threading and optional bytecode interpreter. The presence of a bytecode interpreter
means that GCJ compiled applications can dynamically load and interpret class files, resulting
in a mixed execution model.

http://www.instantiations.com/
http://www.alphaworks.ibm.com/
http://www.naturalbridge.com/

BEST OF ALL WORLDS 11

URL: http://sources.redhat.com/java/

Marmot

Marmot[FKR+99] is a performance competitive research native compiler developed atMi-
crosoft Research. It was aimed to study the potential performance of large applications writ-
ten in object-oriented languages. Marmot does static program analysis and transformation,
including data flow and type-based local and whole-program analyses. Transformations in-
clude elimination of runtime safety checks and synchronization operations, allocating objects
on the stack, elimination of unnecessary memory references, and profile-based method spe-
cialization and inlining. Garbage collection is supported by three garbage collection schemes:
conservative, copying and generational.

URL: http://www.research.microsoft.com/

OpenJIT

The OpenJIT[OSM+00] project is an ongoing Java Programming Language JIT compiler
project as a collaborative effort betweenTokyo Institute of TechnologyandFujitsu Labora-
tory, partly sponsored by theInformation Promotion Agency of Japan. OpenJIT is a “reflec-
tive” JIT compiler in that it is almost entirely written in Java; it bootstraps and compiles itself
during execution of the user program. Compiler components coexist as first-class objects in
the user heap space; thus, users can tailor and customize the compilation of classes at runtime
for a variety of purposes: application-specific optimization, partial evaluation, dynamic en-
vironment adaptation of programs, debugging, language extension, etc. OpenJIT allows full
dynamic update of itself by loading the compiler classes on-the-fly. It is fully JDK compliant,
and plugs into standard JVMs on several Unix platforms such as Solaris (Sparc), Linux (x86),
and FreeBSD (x86).

URL: http://www.openjit.org/

2.3 Best of All Worlds

The JVM described by this document was designed to comprise the advantages, and supercede
the ambitions, of all implementations available so far. In an early stage of development, the
following features were defined as the set of goals we would like to achieve.

Virtual Machine The system must be a virtual machine, not a native compiler, in the sense
that applications should be deployed on standard bytecode.

Full Functional End-User It must be a deployment JVM, supporting all end-user features
including JNI[Sun97] and stack traces. Standard debugging and profiling interfaces
were dropped on behalf of coherence. They are not required by end-users.

http://sources.redhat.com/java/
http://www.research.microsoft.com/
http://www.openjit.org/

12 RELATED WORK

100% Native Execution Execution must be done natively, no interpreter bundled. Most im-
plementations use mixed execution instead of 100% native execution. On JVMs this
happens to avoid the overhead of compiling class initializers which will run only once.
On native compilers, execution is 100% native for code compiled ahead of time. Some
native compilers provide an interpreter to execute code loaded on-the-fly, but most don’t.

Persistent Shared JIT CodeCode generated by JIT must be cached on secondary memory
for future reuse. The cache system must support sharing by multiple JVM instances
running on the same computer. As far as we know, no JVM attempts to save JIT code
on secondary memory. Some JVMs support one time loading which keeps JIT code on
primary memory. Persistent caching enables 100% native execution.

Distributed Capability The JIT compiler may reside outside the computer that runs the
JVM. Multiple JVMs may share a single JIT server. This extends the idea of sharing
JIT code from a computer to a computer network.

Aggressive Compilation Aggressive compiler optimization techniques may apply, since the
cache system dilutes compilation time. The JIT server has the ability to reoptimize
frequently requested code on its idle time. We foresee not only “classical” optimiza-
tions, but also expensive whole-program optimizations (including object-oriented) only
available on native compilers.

Mostly Written in Java The vast majority of the virtual machine is written in the Java Pro-
gramming Language[AG00], including bytecode parser and verifier, and compiler data
structures and algorithms. This takes advantage of object-oriented clarity and reuse and
sets up a performance compromise: the virtual machine will run as fast as the code it
generates. OpenJIT[OSM+00] have been successful on that.

Methods as First-Class ObjectsJIT compiled methods are represented inside the JVM as
first-class objects. Therefore, methods may be garbage collected and handled from Java
code.

Adaptative Optimization The JVM runtime must be constructed so as to support adaptative
optimization. Profiling is done by inspecting stack frames from runtime callbacks. Re-
compilation occur conveniently for popular methods and classes. Replacement makes
old version of methods eligible for garbage collection.

Accurate Garbage Collection The runtime must be able to compute accurately, at any time,
the set of reachable objects. The accurate GC is clear, reliable, and flexible.

Small and Flexible Runtime The runtime must be small (simply JNI, threading and garbage
collected heap). Easy replacement of threading and garbage collection strategies is a
must. Portions of the runtime that can be written in Java are (less dependent on the
correctness and performance of third party compilers).

Highly Portable The virtual machine is highly portable, being written almost totally in Java.
The runtime is written in standard C[KR88] with well defined OS interfaces for native

BEST OF ALL WORLDS 13

threading and memory allocation. Portability is achieved rapidly for platforms based on
the same processor. When porting to a new processor, a new compiler back-end must be
written. Most optimizations occur in the intermediate representation, and do not require
to be rewritten.

Precompiled Bootstrap ClassesBootstrap classes, including core library classes and JIT
compiler classes, are precompiled during virtual machine generation. Those classes
do not need to be changed by users, they only change when a new JVM version is re-
leased. This provides instant performance for system classes and avoid chicken-egg
compilation problems (because the JIT is written in Java).

Selective MetadataThe runtime does not need to waste primary memory with metadata for
all loaded classes. It should be retrieved on demand from the cache system. Metadata
are required by applications that use some special Java APIs (e.g. reflection) and for
printing stack traces.

Chapter 3

Virtual Machine Design

This chapter describes the overall design of our JVM implementation. Rather than a Java
Virtual Machine, the system is best qualified as aJava Virtual Machine architecture. Cur-
rently, this architecture is composed of three software components: a client, a server and a
client-generator. The components, their roles, and how they interact are described here.

3.1 A JVM Architecture

Our implementation of the Java Runtime is best qualified as a Java Virtual Machine architec-
ture. That is because it is not a single software that implements the JVM. There are software
components that work independently and do specific tasks. Part of the system is generated by
itself and the comunication is made using a simple service-oriented protocol. Currently, the
JVM architecture is composed of three software components:

Client JVM The virtual machine itself, it comes in two flavors:StandaloneandThin-Client.

Client JVM Generator The virtual machine generator, automatically produces a Client JVM
based on a given configuration.

Server JVM The virtual machine server, comprises basically the class file parser, bytecode
verifier and JIT compiler. It has a secondary memory cache system.

3.2 Software Components

This section provides information about the software components that make up the JVM ar-
chitecture.

3.2.1 Client JVM

The Client JVM component is the software that implements the user level Java Virtual Ma-
chine. Most of it is generated from Java bytecodes and coupled with a C runtime. Figure 3.1
shows the structural decomposition of the Client JVM in subcomponents.

15

16 VIRTUAL MACHINE DESIGN

As usual, the JVM is implemented as a platform dependent library that is loaded from
an application, theLauncher, using JNI[Sun97]. It reads core and user classes from the file
system (using theCLASSPATH1) or another application defined source. Native methods are
implemented externally inNative Librarieswhich are loaded on demand by the JVM.

API

JNI

GC
Heap

Multi-
threading

OS Interface

C Runtime

Core Classes

Embedded
Bootstrap Classes

JIT Interface

Client Virtual Machine

User Classes

Libraries
Native

Launcher

Figure 3.1: Client JVM subcomponents.

Internally, the Client JVM has a C runtime which comprises the implementation of JNI,
heap structures and garbage collector algorithms, multithreading, exported extra JVM calls,
and an OS interface (including assembly required calls). Most of the C runtime is written
in standard C on a portable manner. There are special interfaces to processor and platform
dependent operations. Both the garbage collector and multithreading subsystems have a well
defined interface, which makes strategies replacement easy. The heap structures, however,
are meant to be fixed. The extra JVM calls are calls required by native libraries that cannot
be implemented from JNI calls (e.g.Object.clone()), they exist to decrease JVM inter-
nals exposure to core native libraries. The C runtime implementation details are described in
Chapter 8. The garbage collector is detailed in Chapter 9.

As said before, part of the Client JVM is generated from Java bytecodes. These Java byte-
codes comprise the core API classes[CLK98, CL97, CLK99] and some JVM implementation
internal classes, including JIT compiler and Java language type support[LB98]. During gen-
eration, those classes are translated to assembly and placed on a segment following the heap
layout. When the JVM is created, the C runtime does the bootstrap using those embedded
classes. This enables the implementation of most of the Client JVM using the Java language.

The JIT Interface, as depicted on Figure 3.1, is part of the Java code embedded on the
Client JVM. This interface defines a set of methods used by the Client JVM to handle dynam-
ically loaded code, as well as other link-time activities. During generation, a JIT Interface
implementation must be chosen to be embedded on the Client JVM. Currently, two imple-
mentations of the JIT Interface are provided, as shown in Figure 3.2.

TheStandaloneJIT Interface implementation (Figure 3.2 (a)) provides standard behavior
to the Client JVM. As other JVM implementations, the complete functionality of the Client

1The CLASSPATH is specified by the launcher, which reads it from the command line or from an environment
variable.

SOFTWARE COMPONENTS 17

Cache Subsystem

Verifier

Optimizer

Embedded

Back-End

x86

Execution Engine

Standalone JIT (x86)

Cache

Cache Subsystem

Connection Handler

Thin-Client JIT

Server Connection

Cache
Local

Optional

(a) (b)

Figure 3.2: JIT interface implementations.

JVM is bundled in a single monolithic piece of software. In this case, all code — including
class file parsing, bytecode verifier, JIT compiler and cache subsystem — will be embedded
on the Client JVM. A specialized target-specific compiler back-end is also provided. The
Standalone implementation allows compiled code caching and sharing on a single computer.

The other JIT Interface implementation available is theThin-Client (Figure 3.2 (b)). A
Client JVM that uses the Thin-Client implementation will require a Server JVM to execute,
which receives requests delegated through a secure network connection. Therefore, the Thin-
Client implementation is light-weight and is not required to run on a computer with secondary
memory. Optionally it may have a local cache to minimize network activity.

3.2.2 Server JVM

The Server JVM component implements an external JIT compiler engine that receives one or
more connections from Thin-Client JVMs. It is entirely written in the Java language and its
core is composed of the same set of classes as the Standalone Client JVM.

Client Connections

Other
Back-Ends

x86
Back-End

CacheCache Subsystem

C
on

ne
ct

io
n

H
an

dl
er

Verifier

Optimizer

Plug-in

Interface

Back-End

Execution Engine

Server Virtual Machine

Figure 3.3: Server JVM subcomponents.

Figure 3.3 shows the structure and subcomponents of the Server JVM. Similar to Stan-
dalone Client JVM, it has a class file parser, bytecode verifier, JIT compiler, and cache sub-

18 VIRTUAL MACHINE DESIGN

system. The major difference is theBack-End Plug-in Interfacewhich targets multiple simul-
taneous back-end implementations instead of a single embedded target-specific back-end. A
Server JVM may generate machine code for many processors, as well as provide methods in
raw intermediate representation. This raw IR mode can be used byInterpreted Client JVMs2

which interpret IR, rather than bytecode, on unsupported processors.
Since it is written in the Java Programming Language, the Server JVM requires a Java

Virtual Machine to execute. Instead of running the Server JVM on a third-party JVM, which
could have a negative impact on performance, or run it on a Thin-Client JVM, which would
require another Server JVM, we run it on a Standalone Client JVM. Doing that makes possible
the sharing of common components of both the Server JVM and the underlying Standalone
Client JVM, ideally.

3.2.3 Client JVM Generator

TheClient JVM Generatorgenerates Client JVMs based on a configuration. The Client JVM
Generator configuration specifies the set of classes, and their linkage state, upon bootstrap. It
simulates the loading and linking of core classes on a virtual heap — connecting to a Server
JVM — and outputs an assembly file. The assembly file contains a segment declaration and
the virtual heap transcript to the target platform layout. Automatic virtual machine generation
is covered on Chapter 10.

API

Core
Classes

Cache

Runtime

Runtime
Objects Objects

Core

Library
Machine

Run-Time

Machine

Standalone

Thin-Client
Machine

Platform
Loader

Server
MachineGenerator

Machine

Assembler
Platform

Platform
Linker

Platform
C Compiler

Generate-Time

+

Figure 3.4: System functional diagram.

2Not implemented on the architecture.

FUNCTIONAL OVERVIEW 19

3.3 Functional Overview

The Figure 3.4 depicts a functional diagram of the whole system.
At generate-time, a Client JVM is produced by linking objects resulting from compiling

the C runtime and assembling the core classes output by the Client JVM Generator. For
both Standalone and Thin-Client JIT Interface implementations, the C runtime is the same,
but the core classes vary according to the configuration. During generation, the Client JVM
Generator connects to the server to link classes and compile their associated methods. After
linkage, a platform dependent shared library is output, and can be loaded using the standard
JNI primitives.

At run-time, the Launcher application loads the Client JVM shared library using the plat-
form loader. Depending on the configuration chosen during Client JVM generation, two run-
time possibilities exist. In the Thin-Client implementation, the Client JVM connects to the
server and delegates linkage requests to it. In the Standalone implementation, the Client JVM
has embedded linkage functionality, it directly accesses the local cache system.

Aside from the rest of the system, the Server JVM is used by both the Thin-Client JVM
and the Client JVM Generator to compile and link classes. It has a local cache system which
may be shared with other instances of the JVM.

Chapter 4

Server-Side Context Identification

This chapter covers context identification. In order to implement the cache system, the Server
JVM has to effectively detect repetitive situations in Client JVMs and respond using stored
data. Details about how context identification was implemented and the problems that came
up during its implementation are discussed.

4.1 States & Phases

The communication between Client JVMs and the Server JVM was designed using a very
simple scheme. This communication is service-oriented and the special termphaseis used
to name services made available by the Server JVM. A phase has parameters that must be
provided by the Client JVM, and a response that is computed by the Server JVM. Each phase
starts a task for which the same parameters always yield the same response. This fact is the
key point of the cache system.

The execution of the phase task always handles information regarding a particular class
in a particularstate. A class may be in one of three states:registered, loadedor linked, as
depicted in Figure 4.1. Each one of these states is associated to a context required to compute
the phase response.

loaded linked

Meta, Context

registered

Load* Link*
Relink*,Translate

Register*

Figure 4.1: Diagram showing class states and phases.

A brief description of each phase is given bellow. As some important concepts are made
clear in the following sections, an insight of each phase is provided to clarify the idea.

21

22 SERVER-SIDE CONTEXT IDENTIFICATION

REGISTER Phase In this phase, a class image — as extracted from the class file — is regis-
tered in the system.

L OAD Phase In this phase, a registered class is hierarchicalized; information about its ances-
tors classes becomes available.

M ETA Phase This phase provides meta information about a class.

CONTEXT Phase This phase provides class names for classes involved on the linkage of a
loaded class.

L INK Phase In this phase, a loaded class is linked. This means it was fully verified and its
methods have been optimized based on context information.

RELINK Phase In this phase, the methods of a linked class are reoptimized based on more
context information.

TRANSLATE Phase This phase provides the binary native translation of the methods of a
linked class.

The RELINK phase is not available on our first implementation. However, its purpose is
exposed since a limited, but still useful, dynamic recompilation feature can be achieved based
on it.

4.2 Computing Class Versions

In order to identify classes and class contexts off-line in the server side, we compute class
versions. The class version is a number that in conjunction with the class name identifies a
class in a particular context. There are three types of class versions: registered, loaded and
linked (the states in the Figure 4.1). Some phases (REGISTER, LOAD, L INK , RELINK) change
the version of a class.

The registered versionis the version associated to a particular class image outside a con-
text. A registered pair<name#rg-version > identifies the attempt to associate a particular
class image, valid or not, with a class name.

The loaded versionis the version of a class when it is placed in a type hierarchy. A
loaded pair<name#ld-version > provides not only information about a class but also
information about its ancestors.

The linked versionis the version of a class when the information about classes and its
neighborhoodis known. The term neighborhood is used here to define all classes directly
referenced by a particular class. Those classes comprises classes from which fields are ac-
cessed, methods are called, etc. It also includes classes handled by the JVM for some implicit
operations (e.g.ArrayIndexOutOfBoundsException class may be instantiated by the
iaload bytecode).

Not limited to class versions, the pair<name#version > is also used to identify phases
(the arrows in the Figure 4.1). It is used as key to cache system entries.

DEALING WITH CLASS LOADERS 23

In our implementation, the class version is coded as a 64-bit integer obtained from the
160-bit integer result of the application of theSHA-1 hashing algorithm[Nat95] to some pa-
rameters. The parameters depend on the information being requested. For instance, during
class registration the hashing algorithm is applied over the class file image; on loading the
algorithm is applied over the loaded versions of the ancestors of the class being loaded as well
as its registered version and some other specific data. The mapping from 160-bit integer to the
64-bit is done by applying 4 xor operations over each 32-bit chunk shifted by 8. This map is
done solely to provide shorter file names when writing the response to the cache system, since
the file name is derived from the pair<name#version >.

Since this is the first implementation of our system, we did not handle clashes in class
versions. We believe that the validation of the caching idea was important enough to ignore
this fact. Moreover, the SHA-1 algorithm was designed to avoid clash occurrence. It is even
computationally infeasible to simulate it1. However, its identification is an important issue
since it is related to the system predictability. We intend to handle this issue in future imple-
mentations.

4.3 Dealing with Class Loaders

Class loaders offer a great challenge when trying to effectively identify contexts, which is
crucial to exploit the cache system. The main problems which regard the existence of class
loaders are related to safe type manipulation, the java security (package private members
accesses) and the mapping of its dynamic nature.

Types inside the JVM are identified by a pair(class name, class loader). However, since
class loaders are instances of classClassLoader , they may be instantiated at run-time.
Therefore, new types can be introduced in the system during its execution. This feature gives
some dynamic typing flavor to the Java language. As class loaders have a dynamic nature, it
is difficult to identify and detect contexts inside the JVM. This is explained by the example,
showed in Figure 4.2.

A

B

A#2

B#1 B#2

A#2 A#2

B#2

(a) (b) (c) (d)

Figure 4.2: Extending non-public class, context: (a) Static; (b) Before loading; (c) Both
classes defined by the same class loader; (d) Each class defined in a different class loader.

Suppose we are loading classB which symbolically extends a non-public classA (Fig-
1It did not happen during testing and benchmarking of the system.

24 SERVER-SIDE CONTEXT IDENTIFICATION

ure 4.2 (a)). At load time, we have already registered classB so we have its registered version,
say1; classA is also loaded and has its loaded version, say2 (Figure 4.2 (b)).

By now, lets forget about class loaders. The Client JVM sends to the Server JVM the
parameters to the LOAD phase which are: superclass= <A#2>; interfaces= ∅; class=
<B#1>. Note that we are trying to capture a context here (the detailed description of how
this occurs will be given on Section 4.5 when we look at each phase). The Server JVM then
analyses the context for the LOAD phase and sends to the Client JVM an error response or the
loaded version of classB, say2. So, by ignoring class loaders, the server will send back to the
client the response<B#2> (Figure 4.2 (c)).

However, when considering that classA was not defined in the same class loader as class
B, then classA is not in the sameruntime packageof classB. Therefore, since classA is
non-public, the access must be denied by the Server JVM. In the Client JVM, an instance of
IllegalAccessError must be thrown (Figure 4.2 (d)).

How to capture this simple context when class loaders, and therefore types, cannot be
trivially identified? The solution we found was not to identify class loaders at all. However,
we associate to each class relation — where class loader existence matters (e.g. extended class,
implemented interface, accessed field owner) — a boolean value indicating if both elements
of the relation where defined by the same class loader.

A#2

B#2

falsetrue

B#3

Same Loader Context

Different Loader Context

Figure 4.3: Mapped contexts.

Figure 4.3 shows the two contexts mapped using class loader information (In the figure,
dashed lines group together classes defined by the same class loader). Note that the version
of classB is different on each context, since the class loader flag is considered in version
calculation.

4.3.1 Extended Loader-Based Class Names

Given that class loaders are not identifiable by our context mapping scheme, we have to pro-
vide an alternate form of identification for types. This is required if we intend to handle classes
from outside thenamespace2 of the class in which a particular context is based.

We have extended thefully-qualified internal class name form[LY99, §2.7.4] in order to
address this issue. The new syntax is shown in Figure 4.4.

2The association of namespaces to classes is an overloaded usage of the term, when we refer to the namespace
of a class we are actually refering to its defining class loader namespace.

DEALING WITH CLASS LOADERS 25

ExtendedClassName→ FullyQualifiedClassName
| ExtendedClassName“ ˆ” FullyQualifiedClassName

Figure 4.4: Extended class name syntax.

The extended class name is always interpreted in the sense of a particular class, in the
same way as class names are interpreted in the sense of a class loader. The first fully-qualified
name (from left to right) identifies a class with that name in the current namespace. So on,
each fully-qualified name identifies a class with that name component in the namespace of the
previously identified class. For instance, the class nameBˆC , when interpreted in the context
of classA, identifies the classC obtained from the namespace of class B which is obtained
from the class loader of class A.

Obviously, each class may be identified by multiple extended class names. Sometimes, it
is possible to tell if two extended class names refer to the same class; if they surely refer to
distincts classes; as well as not being able to state any of that at all.

Here are some facts about extended class names:

• Two extended class names only refer to the same class if the rightmost fully-qualified
name is the same for both.

• The syntax and semantics of extended class names in the context of a class is upwards
compatible with the syntax and semantics of the fully-qualified class names of classes
referenced by that class.

• Every subsequence of fully-qualified class names — where each name identifies a class
defined by the same class loader as others — may be omitted, but the first, from the
extended class name.

• No special syntax is used to identify bootstrap classes. Since the hierarchy root is the
bootstrapObject class, any bootstrap class may be identified by first identifying the
hierarchy root and then refering to a class in its namespace.

4.3.2 Type Uncertainty and Interfaces

Although it enables context mapping and caching, the mechanism for dealing with class load-
ers has serious problems regarding type inference. In some situations, the amount of context
information available about class relations is not enough to tell if a versioned class represents
one or many distinct classes. This is explained by an example.

Suppose we have two runtime contexts. In the first context, depicted in Figure 4.5 (a),
a subclassB reimplements an interfaceI already implemented by its superclassA. In the
second context, depicted in Figure 4.5 (b), the subclassB implements another interface binary
compatible with interfaceI but defined in another class loader, so it represents another type.

When mapping these two contexts we get the same class relation, as depicted in Figure 4.6.
This occurs because there is not enough context information to let us distinguish interfacesI

26 SERVER-SIDE CONTEXT IDENTIFICATION

O

A

B

I

O

A

B

I

I

(a) (b)

Figure 4.5: Two contexts: (a) Single interface; (b) Multiple interface.

in the second context. Both interfaces are subclasses ofOnot defined in its class loader. There-
fore two distinct contexts have the same mapping; avoiding this cannot be done effectively.

The type uncertainty occurs whenever at least two class relation edges in the path from one
class to another are false. This means that there is no way to tell if those classes are defined
by the same class loader or not. In that case, both contexts have the same mapping.

Type uncertainty limits the use of type inference in optimizations. For instance, in the
example shown, we cannot tell from classB if classAˆI equals classI .

Luckly, when constructing method tables, there is no need to reserve distinct method areas
inside method tables for each path leading to a versioned ancestor class3 passing through
two or more false edges. Since all classes represented by the versioned class have binary
compatibility, they can share the same method area.

false

false

false

false

O#2

A#2

B#4

I#2

false

Single Interface Context

Multiple Interface Context

Figure 4.6: Different contexts that are identified equally.

3Actually, it only occurs to interfaces since the Java language does not support true multiple inheritance.

A PORTABLE WAY OF DESCRIBING SIZES AND OFFSETS 27

4.4 A Portable Way of Describing Sizes and Offsets

Since we did not want to tailor the Server JVM to a particular architecture or platform, we had
to provide a portable way of describing sizes and offsets of associated to heap information.
That was achieved by representing sizes or offsets by a pair(references, bytes). The first
element of the pair is the number of references that contribute to the measure. The second
element of the pair is the number of bytes that contribute to the measure. To calculate the
actual value in bytes represented by the pair, the Client JVM must scale the first element,
using the size in bytes of references in its implementation, and add to the second element. For
instance, the value of the pair(3,4) in a 32-bit system is3 ∗ 4 + 4 = 16 bytes.

4.5 Describing Each Phase

In this section, each one of the phases introduced in Section 4.1 is described. We focus on
the main features of each phase rather than providing a precise specification or listing all
implementation details. However, whenever necessary, issues regarding precise understanding
of these features are detailed.

4.5.1 REGISTER Phase

In the REGISTER phase, the Client JVM sends to the Server JVM the expected name and
binary contents of the class file associated with the class being processed.

The Server JVM applies the hashing algorithm to the class file contents; the result is
used as theregister version numberfor that class. Then, the Server JVM looks for an entry
<name#version > in the cache system. On a miss, it tries to parse the class file contents
(Pass 1 on the verification process[LY99,§4.9.1]), caches it and returns a response.

REGISTER (java/util/Stack)

class-id: <java/util/Stack#8ee05ed6bda9bce1>

access flags: 0x21
superclass: java/util/Vector

<no interfaces>

Figure 4.7: REGISTERphase result information for classStack .

Figure 4.7 shows the result of applying the REGISTERphase to classStack .
The response depends on successful parsing of the class file contents. If the class file con-

tents are valid, the Server JVM sends back to the Client JVM the registered version number,
the access flags, the superclass name (if any) and the implemented interfaces names (if any).
As the result of an error during class registration, the Server JVM may provide three possible

28 SERVER-SIDE CONTEXT IDENTIFICATION

causes: unsupported class file version number, malformed class file contents or unexpected
class name.

Upon the successful response, the Client JVM will proceed to the LOAD phase which in
conjunction with the REGISTERphase makes up the JVM class creation and loading process
([LY99, §5.3]). In the case of an error response, the Client JVM will throw an instance of the
following classes, respectively:UnsupportedClassVersionError , ClassFormatError
or NoClassDefFoundError .

4.5.2 LOAD Phase

As said before, to complete the JVM class loading process the LOAD phase takes place just
after the REGISTERphase. In the LOAD phase the associated class ishierarchicalized, mean-
ing that all its ancestors in the type hierarchy must be known. Once hierarchicalized, more
information can be gathered about that class, including instance and static sizes, field offsets,
dynamic dispatch method table length, method dispatch indices, etc. Also, after the LOAD

phase has successfully being completed, a new version number is associated to that class.
In order to request a LOAD phase, the Client JVM should provide some parameters which

are: the class name and registered version of the class being processed; a boolean value in-
dicating if it is a bootstrap class; the superclass name, the superclass loaded version and a
boolean value indicating if it was defined by the same class loader as the processed class; for
each direct implemented interface, its name, its loaded version and a boolean value indicating
if the interface was defined by the same class loader as the processed class.

The Server JVM then computes the loaded version number for the class being processed,
by applying the hash algorithm to these parameters. A<name#version > pair is obtained
and used as key in the cache system. On a miss, the Server JVM has to compute the response
to the LOAD phase, otherwise the response is ready to be sent to the Client JVM.

As occurred in the REGISTERphase, the Server JVM processes the parameters and provide
some useful client data or return an error message on failure. The data provided by the Server
JVM in the LOAD response contains mostly information about the size of the areas used by
the associated class, it comprises: the loaded version, the static field area size, the offset and
length of the reference table inside the static field area, the instance field area size, the offset
and length of the reference table inside the instance field area, the dynamic dispatch method
table length, the direct interfaces base offsets in the dynamic dispatch method table and the
native pointer table length. The meaning and use of each of these informations will become
clear when we describe the client runtime in Chapter 8. As result of an error in this phase,
the Server JVM may provide two possible causes: its superclass is an interface (or any of its
direct implemented interfaces is a class), or the class is unable to access its direct ancestors.

In the client side, the information provided by the Server JVM is used to change the ver-
sion number and allocate storage for the class being processed. On error, the Client JVM
should throw an instance of the following classes respectively:IllegalAccessError
andIncompatibleClassChangeError . Also, the Client JVM is responsible for keep-
ing track of hierarchy circularity, throwing aClassCircularityError instance when-
ever necessary.

Figure 4.8 shows the result of applying the LOAD phase to classStack .

DESCRIBING EACH PHASE 29

LOAD (java/util/Stack)

class-id: <java/util/Stack#5c5614ee3f7ba14>

static fields: size (0,8) refs 0 offset (0,8)
instance fields: size (1,12) refs 0 offset (1,12)

static methods: table length (2)
instance methods: table length (91)

native methods: pointers (0)

Figure 4.8: LOAD phase result information for classStack .

The size and offset for the field areas are represented, as described in Section 4.4, using
a pair(references,bytes). The Server JVM tries to place the fields assuming that every field
area will be padded based on the target architecture word size (as commonly implemented in
the memory allocator). For instance, for field areas, it first tries to fill in holes left blank by
the padding on the superclasses areas, then it places the remaining fields on a decreasing size
order assuming references are 32-bit wide. Using this policy, the Server JVM generates the
best alignment for 32-bit systems. Also the Server JVM tries to generate the best alignment
for 64-bit systems, by leaving a 4-byte hole before placing 8-byte fields on an unaligned area;
but this is done only if the hole is filled after the remaining fields are placed. We prefer having
some misaligned references on 64-bit systems rather than wasting a word space on 32-bit
systems. For static field areas, we place fields on a decreasing size order, getting the best
alignment for all systems.

The calculation of dispatch method table size and placement is simpler. There is no align-
ment problem since all method pointers have the same size for all systems. The dispatch
method table placement for the current class uses the superclass dispatch table as start point.
Then, for each interface implementation not yet implemented by the superclass its dispatch
table is appended, its base index is associated to the interface being implemented. At last,
for every new method declared in the current class, an entry is appended to the method table.
This provides the size of the dispatch method table for the current class. The initialization and
override patches for the dispatch method table are done in the LINK and TRANSLATE phases.
Static methods are placed on a separate table, since they need not to appear in subclasses
dispatch tables.

4.5.3 META Phase

In the META phase, the Server JVM sends back to the Client JVM meta information about a
particular class. The meta information is required basically by the JNI, the reflection API and
when printing stack traces. The META phase does not change the linking state of the class nor
cause any link-time error to be thrown.

The major advantage of having the META phase is the fact that the Client JVM does not

30 SERVER-SIDE CONTEXT IDENTIFICATION

need to store meta information for most of its loaded classes. It is an effort to decrease the
memory footprint on the client side.

In order to request a META phase, the Client JVM should provide the loaded version or
linked version4 of the related class. The Server JVM then sends its response, which is the
compilation of all meta information currently required by the runtime.

META (java/util/Stack)

class-id: <java/util/Stack#5c5614ee3f7ba14>

access flags: 0x21
field[0]: 0x1a serialVersionUID J offset (0,0)

method[0]: 0x1 empty()Z index 86
method[1]: 0x1 push(Ljava/lang/Object;)V; index 87
method[2]: 0x21 peek()Ljava/lang/Object; index 88
method[3]: 0x21 pop()Ljava/lang/Object; index 89
method[4]: 0x21 search(Ljava/lang/Object;)I index 90
method[5]: 0x1 <init>()V index 92

declaring class: <top level>

<no inner classes>

source file: Stack.java

Figure 4.9: META phase result information for classStack .

Figure 4.9 shows the result of applying the META phase to classStack .
Metadata comprises the following information:

• Access flags (from source declaration).

• Owned fields metadata:

– Access flags.

– Name and descriptor.

– Offset.

• Owned methods metadata:

– Access flags.
4The loaded version is always available from the linked version on the server side.

DESCRIBING EACH PHASE 31

– Name and descriptor.

– Exceptions thrown (from source declaration).

– Dispatch index.

• The declaring class if this class is an inner class.

• Owned inner classes metadata:

– Access flags.

– Name.

• Source file, if available.

4.5.4 CONTEXT Phase

The CONTEXT phase provides the class names of all classes required to proceed with the
L INK phase of a particular class. The class names present in the CONTEXT response are in
the extended fully-qualified form (Section 4.3.1). The CONTEXT phase does not change the
linking state of the class nor cause any link-time error to be thrown.

CONTEXT (java/util/Stack)

class-id: <java/util/Stack#5c5614ee3f7ba14>

context[0]: java/lang/IllegalMonitorStateException
context[1]: java/util/EmptyStackException
context[2]: java/lang/NullPointerException
context[3]: java/util/Vector

Figure 4.10: CONTEXT phase result information for classStack .

Figure 4.10 shows the result of applying the CONTEXT phase to classStack .

4.5.5 LINK Phase

During the LINK phase, a particular class is linked, verified (see Chapter 5) and its methods
are converted to theintermediate representation(see Chapter 6).

In order to request a LINK phase, the Client JVM should provide some parameters which
are: the class name and loaded version of the class being processed; for each class in the
neighborhood: its loaded or linked version, a boolean indicating if that class has been ini-
tialized, and a boolean for each of its superclasses (including itself) indicating if they were
defined in the same class loader as the class being processed. This last parameter is used to

32 SERVER-SIDE CONTEXT IDENTIFICATION

correctly implement the resolution and overriding of package private members only accessible
by classes in the same runtime package.

The Server JVM then computes the linked version number for the class being processed,
by applying the hash algorithm to these parameters. A<name#version > pair is obtained
and used as key in the cache system. On a miss, the Server JVM has to compute the response
to the LINK phase, otherwise the response is ready to be sent to the Client JVM.

As occurred in other phases, the Server JVM processes the parameters and provide some
useful client data or return an error message on failure. The data provided by the Server JVM
in the LINK response comprises: verification constraints, loading constraints, interface imple-
mentation dispatch table patches, and a flag indicating if instances of the processed class will
require finalization. Theverification constraintsare a set of pairs that symbolically encode
subtype tests that must hold to complete the class verification process. Each pair is composed
of an extended class name representing the supertype and a set of extended class names rep-
resenting the subtypes. To validate a verification constraint, the Client JVM must check if
the supertype class can be assigned from the first common superclass of the subtype classes
(Details are given in Chapter 5). If any of the verification constraints fail, verification also
fails. Similarly, theloading constraintsare a set of pairs that symbolically encode type equal-
ity tests that must be imposed whenever execution crosses class loader boundaries ([LY99,
§5.3.4]). Both elements of the loading constraint are extended class names.

The interface implementation dispatch table patch setis a set of pairs indicating which
method table entries must be copied from the superclass method table to cover new interface
method areas whose method implementation was inherited. The construction of the dispatch
method table is partially done during the LINK phase and completed in the TRANSLATE phase.
In the LINK phase, the dispatch table is initialized with a snapshot of the superclass dispatch
table, also some entries in the new interface method areas are initialized using the interface
implementation patches. In the TRANSLATE phase, each method is sent back to the client
with a set of patches that completes the dispatch table construction process. In case of an
error during this phase, the Server JVM may provide seven possible causes: a access to class
or member is denied, class did not pass verification, field does not exists, method does not
exists, static method or interface is used where a non-static method or class is expected (or
vice-versa), method to be invoked is abstract, or class to instantiated is abstract.

Figure 4.11 shows the result of applying the LINK phase to classStack .

In the client side, the information provided by the Server JVM is used to change the version
number, check verification constraints, impose loading constraints, perform the first step of
dispatch table initialization, and optimize garbage collection. When an error occurs, the Client
JVM should throw an instance of the following classes, respectively:IllegalAccessError ,
VerifyError , NoSuchFieldError , NoSuchMethodError , IncompatibleClassChangeError ,
AbstractMethodError , and InstantiationError . Also, the Client JVM is re-
sponsible for throwing aVerifyError or LinkageError , respectively, if the checking
of verification constraints or the imposing of loading constraints fails.

DESCRIBING EACH PHASE 33

LINK (java/util/Stack)

class-id: <java/util/Stack#9287908c86cf3330>

verify target[0]: java/util/Vector
source[0]: java/util/Stack

verify target[1]: java/lang/Throwable
source[0]: java/util/EmptyStackException

<no loading constraints>

<no implementation patches>

finalizes: false

Figure 4.11: LINK phase result information for classStack .

4.5.6 RELINK Phase (Not Implemented)

The RELINK phase allows the Client JVM to update the context information for a particular
class. Once a class has been relinked, usually, the Server JVM will have more information
about classes on its neighborhood. At the same time, more information about that class will
become available to classes whose neighborhood contains it. More information means that
the JIT will have a greater opportunity to optimize the code during a subsequent TRANSLATE

phase. The optimization is applied to all methods of a particular class, and the results are kept
associated with the new context in the system cache.

Although the RELINK phase has not been fully implemented in our system, it has been
foreseen in our design. The RELINK phase allows a limited but still valuable form ofdynamic
adaptative reoptimization. It allows the Client JVM to implement heuristics for detecting crit-
ical classes and replace their methods by improved versions. Although the Client JVM does
not provide explicit runtime profiling data, those heuristics may be constructed by analysing
each thread stack during callbacks to the runtime. As described on Chapter 8, this support
for discovering the method call chain — and their declaring classes — in a thread stack, is a
requirement to print stack traces and implement caller class inspection security checks in the
API.

Similarly to the LINK phase, each RELINK phase receives as parameters the versions of
the classes in a given neighborhood; it responds by just modifying the related class version.
That version update reflects on the neighborhoods in which that class takes part.

If a class takes part of another class neighborhood (N), and vice-versa, the RELINK request
in one will modify the other class context. When the latter is relinked the former context will
also be affected. This should happen only until no more change on contexts happens, but
versions could keep changing indefinately. The convergence criteria which avoids this is that
a classC can only be relinked until all classes on itsiterated neighborhood(N ∗) are in a

34 SERVER-SIDE CONTEXT IDENTIFICATION

linked state. The iterated neighborhood of a class is the union of the set of classes in its
neighborhood, and the classes in their iterated neighborhoods.

N ∗c = Nc ∪
⋃
d∈Nc
N ∗d

This criteria prevents the system from applying the RELINK phase indefinately for a par-
ticular class. However, this criteria does not help the system from applying useless RELINK

phases — and version changes — until all classes are in linked state. A RELINK phase is
useless if the cardinality of the iterated neighborhood subset of classes in loaded state does
not change upon its application. This can be detected in the server side and, in this case, the
Server JVM must not apply a class version change. It does not prevent the useless RELINK

phase from taking place, but prevents a class version change which increases the probability
of a cache hit.

4.5.7 TRANSLATE Phase

In the TRANSLATE phase, the Server JVM sends to the Client JVM the native binary images
of its methods, as well as the entries in the dynamic dispatch method table that should point
to each of them. The parameters to the TRANSLATE phase are thelinked class versionand a
back-end name. Upon a TRANSLATE request, the Server JVM applies the hashing algorithm
over its parameters and check for an entry in the cache system. On a miss, the Server JVM will
uses the back-end name to dynamically load an implementation of itsback-end interface. If
such back-end implementation exists, each method is translated, otherwise an error is returned
to the Client JVM. At this time, our implementation supports two back-end implementations:
raw andx86.

The raw back-end returns to the Client JVM the methods without translating then to any
machine language, they are kept in internalintermediate representationIR form. Theraw
back-end is intended to be used by client implementations based on interpretation. The inter-
pretation of the IR is simpler and faster than the interpretation of the Java bytecodes. In the
IR form, complex operations are broken into simpler ones, and execution takes advantage of
mid-level optimizations.

The x86 back-end, described on Chapter 7, translates the methods from IR form to the
Intel Architecture 32-bit machine language, targeting the 80386 processor. The response sent
to the client is an array of bytes, as well as some relocation tables that should be used to patch
it in the client side.

Chapter 5

Efficient Bytecode Verification

This chapter provides details about thebytecode verificationprocedure. The verification pro-
cedure herein described is mostly symbolic which means it can be done off-line with some
checks at run-time. The approach we use for the data flow analysis is different from the
standard procedure[LY99,§4.9] in the sense that it iterates over basic blocks instead of in-
structions, moreover subroutines restrictions are relaxed for the sake of generality. Bytecode
conversion to intermediate representation, covered in Chapter 6, relies on information pro-
vided by the verification procedure to discover the actual types of untyped operations (e.g.
dup bytecode).

5.1 Symbolic Bytecode Verification

Symbolic bytecode verification provides the same results of standard bytecode verification
but working with class names instead of using actual class and hierarchy information. It was
designed to be performed off-line, when actual type information is not available. It generates
data to be used to complete the verification process once type information is available. Actual
type information is required at two times during verification:

1. To discover the type of two or more references that share the storage after a path merge
in the data flow analysis. The type after the merge is considered to be the first common
superclass of the types prior the path merge.

2. To test subtyping whenever a type is used where another type is expected. The former
must be a subtype of the latter.

We have implemented the verification procedure in a way that both situations can be han-
dled later, when type information becomes available. First, to handle types resulting of a path
merge, we encode types not as bare class names but asclass name sets. So, each set repre-
sents the first common superclass of its elements. Trivially, a set of cardinality 1 represents
its unique element. During a path merge, a union of the sets is performed. Second, to handle
subtype tests, we generate a set ofverification constraints. A verification constraint is a pair
of class name sets that encodes a subtype test. The first element of the pair is the target type

35

36 EFFICIENT BYTECODE VERIFICATION

which must be a supertype of the second element of the pair. The symbolic verification can
thus take place off-line. If it does not fail, it generates a set of verification constraints that
must be checked using actual type information. If any of the verification constraints fail, the
verification procedure also fails.

5.2 Parsing the Class File

The parsing of the class file is performed in the REGISTER phase and it ensures that the
format is not corrupted. During parsing the constant pool, class, fields, methods and attributes
are extracted from the class file and checked for their basic layout and contents. Names and
descriptors have their syntax checked. The bytecode array for each method is read from the
class file but it is not checked, the check is postponed until the LINK phase when static and
structural constraints are checked.

5.3 Checking Static Constraints

Checking the static constraints of the bytecode guarantees that instructions and their corre-
sponding placements obey certain simple rules. It can also be used to gather some important
information that will be required later in the verification process. Failures during static con-
straint check should throw an instance ofVerifyError . The procedure for checking static
constraints is the following:

1. Check if the bytecode array size is greater than zero.

2. Setleaderflag, used to identify basic blocks.

3. Starting at offset 0, for each instruction do:

(a) Check if the opcode at the offset is legal.

(b) Mark the offset asvalid.

(c) If leaderis set, mark the offset asleaderand resetleader.

(d) If the instruction has size greater than 1, check if its size exceeds the bytecode array
(special care should be taken to handle variable sized instructionstableswitch
andlookupswitch).

(e) If the instruction accesses local variables, check if the frame index is less than the
frame capacity (special care should be taken to handle instructions that accesses
long and double data).

(f) If the instruction makes references to the constant pool, check if the constant pool
entries are legal according to the instruction semantics.

(g) If the instruction makes an explicit branch, check if the branch target offset is
inside the bytecode array and mark it asleaderandtarget.

CHECKING STRUCTURAL CONSTRAINTS 37

(h) If the instruction may throw an exception, and is enclosed by at least one exception
handler then setleaderflag.

(i) If the instruction does not fall through then setleaderflag.

(j) If the instruction is a return instruction, check if it is the one required by the return
type of the associated method.

(k) If the instruction is a invoke instruction, check if the number of parameter words
required by it does not exceed 255. Also check if the method being called is not
<init> , except forinvokespecial .

(l) If the instruction allocates an array, check if the array dimensions does not exceed
255 and is legal according to the instruction semantics.

(m) Increment offset by the instruction size.

4. For each exception handler do:

(a) Check if the start pc offset isvalid.

(b) Check if the end pc offset isvalid or equals the bytecode array length.

(c) Mark the handler pc offset asleaderandtarget.

5. Starting at the offset 0, for every offset do:

(a) Check if the offset is notvalid and istarget.

(b) If the offset isleaderor equals the bytecode array length, mark the previous visited
offset astrailer.

If none of the checks have failed, the bytecode has been successfully checked against the
static constraints.

5.4 Checking Structural Constraints

Checking structural constraints requires computing operand stack sizes and accurate type in-
formation. This is done by applying data flow analysis over the bytecode array since that
information depends on the execution flow.

In order to provide an efficient — faster and consuming less memory — implementation
of the data flow analysis, we extract the control flow graph from the bytecode array, differ-
ently from the specification proposal[LY99,§4.9] which suggests doing the data flow on a
instruction basis. Working with basic blocks instead of instructions is a well known technique
to speedup data flow analysis. We have successfully adapted this technique to the bytecode
verification.

The control flow graph is built using information gathered during the static constraints
check. Each basic block encloses instructions from aleaderoffset to atrailer offset inclusive.
By looking at the instruction in eachtrailer offset, it is possible to add the edges to the graph.
Edges are classified in two types: normal edges and exception edges. Normal edges are those

38 EFFICIENT BYTECODE VERIFICATION

edges generated from explicit control actions in the code, i.e. branching and falling through.
Exception edges are those edges generated implicitly by assuming that an exception is thrown
and catched by a handler. There will be an exception edge from each instruction that may
throw an exception, to each handler that encloses that instruction. Each exception edge is
labeled with the class name of the exception being handled.

In our implementation, theret instruction does not generate edges during control flow
graph building nor during the data flow analysis (it is treated specially as described a further
ahead).

Once the control flow graph has been built, for each basic block we generate useful in-
formation required to semantically provide the effects of the verification on that block. This
information comprises:

Operand Stack Delta The increment or decrement of the operand stack size after the execu-
tion of this basic block. Used during flow analysis to compute operand stack sizes at
each basic block entry.

Maximum Operand Stack Decrement Used to check if this basic block will underflow the
operand stack.

Maximum Operand Stack Increment Used to check if this basic block will overflow the
operand stack.

Written Frame Indexes Set A set of indices written by this basic block when executed. Used
to flow throughret instructions.

Flow Function Pseudo code modeling the effects of the verifier on the basic block as a whole.

The set of pseudo code instructions used by the verifier to encode the semantics of basic
blocks is show in Table 5.1. During the construction of the flow function, some simplifications
may be applied to the sequence of pseudo code instructions. For instance, if an IPUSH is
followed by an IPOP then both pseudo code instructions can be removed from the instruction
sequence without affecting its semantics.

In order to compute the data flow analysis, we have to define the data flow item that reflects
execution state for each point in the bytecode. The data flow item comprises the current
operand stack size and types, the current local frame types, and a boolean flag indicating if
the this parameter has been initialized so far. The data flow item types used by the verifier
during the data flow analysis are:

Integer The data flow item represents an integer.

Float The data flow item represents a float.

Long First Word The data flow item represents the first word of a long.

Long Second Word The data flow item represents the second word of a long.

Double First Word The data flow item represents the first word of a double.

CHECKING STRUCTURAL CONSTRAINTS 39

PSEUDO CODE ATTRIBUTE SEMANTICS

IPUSH pushes integer
IPOP pops integer

IENSURE frame index ensures local variable is integer
ISET frame index sets local variable to integer

LPUSH pushes long
LPOP pops long

LENSURE frame index ensures local variable is long first word
LENSURE2 frame index ensures local variable is long second word

LSET frame index sets local variable to long first word
LSET2 frame index sets local variable to long second word
FPUSH pushes float

FPOP pops float
FENSURE frame index ensures local variable is float

FSET frame index sets local variable to float
DPUSH pushes double

DPOP pops double
DENSURE frame index ensures local variable is double first word

DENSURE2 frame index ensures local variable is double second word
DSET frame index sets local variable to double first word

DSET2 frame index sets local variable to double second word
APUSH class name pushes reference

APOP pops reference
APOPSUBTYPE class name pops reference ensuring its a subtype

APOPARRAY pops array reference
APOPBARRAY pops boolean or byte array reference

AGETCOMP pops array reference and pushes component type reference
ASETCOMP pops reference and array ensuring component subtyping

AULOAD frame index loads and pushes reference or uninitialized reference
AURSTORE frame index pops and stores reference, uninitialized reference or ret address

UPUSH offset pushes uninitialized reference
UPOPINIT class name pops uninitialized reference and records its initialization

RPUSH offset pushes ret address
RENSURE frame index ensures local variable is ret address

POP1 same semantics as bytecodepop
POP2 same semantics as bytecodepop2
DUP1 same semantics as bytecodedup

DUP1X1 same semantics as bytecodedup x1
DUP1X2 same semantics as bytecodedup x2

DUP2 same semantics as bytecodedup2
DUP2X1 same semantics as bytecodedup2 x1
DUP2X2 same semantics as bytecodedup2 x2

SWAP1X1 same semantics as bytecodeswap
CHECKINIT checks ifthis has been initialized

CHECKFALL checks if execution falls through the bytecode array

Table 5.1: Pseudo code instruction set.

40 EFFICIENT BYTECODE VERIFICATION

Double Second Word The data flow item represents the second word of a double.

Null The data flow item represents thenull reference.

Reference The data flow item represents a reference to an instance of a known type. The
type is encoded as a set of class names which symbolically refers to the first common
superclass of those classes.

Uninitialized Reference The data flow item represents a reference to a newly created in-
stance, not yet initialized (i.e. lacks class or superclass constructor call). It is encoded
as the offset of the instantiation instruction or a negative flag if it is thethis parameter
of a constructor. When a<init> method is called using an uninitialized reference,
the data flow analyser searches the local frame and operand stack for copies of that
uninitialized references, using its offset, and replace them by its actual type as extracted
from the instruction at that offset. Specially if the uninitialized reference offset is nega-
tive, the data flow item flag forthis parameter initialization is set, and the copies are
replaced the the type of the current class.

Ret Address The data flow item represents a subroutine ret address. It is encoded as a set
of pairs. Each pair consists of the ret address actual offset and the set of frame in-
dices written since the associated subroutine start. It is used when flowing throughret
instructions.

The data flow analysis algorithm we have implemented uses a basic blockworking list.
Initially the working list contains only the entry basic block; the algorithm iterates until the
list is empty. Each iteration, a basic block is chosen and removed from the working list, its
flow function is used to compute the data flow item at the exit point of the basic block (output
data flow item) using the data flow item at its entry point (input data flow item). The data flow
item in the exit point is merged and compared to the data flow item at the entry point of each
of the successor basic blocks. If the comparation fails the data flow item at the entry point of
the successor is overridden by the new value and it is inserted into the working list.

Performing the dat flow analysis through a basic block consists of the following simple
steps:

1. Check for operand stack overflow. This is done by comparing the input data flow item
operand stack size plus the current basic block maximum operand stack increment with
the bytecode maximum operand stack size.

2. Check for operand stack underflow. This is done by comparing the input data flow item
operand stack size minus the current basic block maximum operand stack decrement
against zero.

3. For each ret address in the input data flow item do:

(a) Replace the set of frame indices of each pair by its union with current basic block
written frame indices.

CHECKING STRUCTURAL CONSTRAINTS 41

4. For each pseudo code instruction do:

(a) Modify the input data flow item operand stack and local frame according to the
semantics of the pseudo code instruction.

(b) Check if the available types in the input data flow item matches the pseudo code
instruction operands required types.

(c) If the pseudo code instruction requires a subtype test then a new verification con-
straint is added.

(d) If the pseudo code instruction requiresthis initialization (CHECKINIT), check
if the flow datathis initialization flag is set.

(e) Fails if the pseudo code instruction is CHECKFALL because the execution reaches
the last basic block of the bytecode which falls through.

5. Replace the output data flow item for the current basic block by the current data flow
item.

6. For each control edge leaving current basic block do:

(a) If the control edge is a normal edge and the last pseudo opcode was a UPOPINIT,
then broadcast in the frame the initialization of associated uninitialized reference.

(b) If the control edge is a normal edge, merge and compare the current input data with
the successor input data. If there is a change, override the input data and insert the
successor in the working list.

(c) If the control edge is an exception edge, clear the operand stack and push the
associated reference type. Then, merge and compare the current input data with
the successor input data. If there is a change, override the input data and insert the
successor in the working list.

7. If the last bytecode of the basic block is a return from subroutine (ret), then for each
ret address pair do:

(a) Replace the local frame slots whose indices are not present in the associated frame
indices set by its value in the output data flow item of the basic block preceding
the target basic block.

(b) If any of the frame slots replaced contains a ret address data flow item, replace the
frame indices set by its union with the frame indices set associated to current ret
address.

(c) Merge and compare the current input data with the target basic block input data.
If there is a change override the input data and insert the target basic block in the
working list.

The procedure for merging data flow items is the following:

1. Check if the operand stack size is the same.

42 EFFICIENT BYTECODE VERIFICATION

2. For each operand stack and local frame slot do:

(a) If both types match and are integer, float, long first word, long second word, double
first word, double second word or null, keep the type.

(b) If one type is a reference and the other is null, keep the reference type.

(c) If both types are references, the result type will be a reference type with a class
name set obtained from the union of both classes name sets.

(d) If both types are uninitialized reference and their offset is the same, keep the type.

(e) If both types are ret address, the result type will be a ret address where the set of
pairs is the union of both set of pairs. The union is done over the frame indices set
for pairs with same ret address offset, so that at most one pair is associated to the
same offset.

(f) Otherwise, if the slot is a local frame slot, mark the slot as being invalid. If the slot
is a operand stack slot, fail.

3. Apply anandoperation using boththis parameter initialization flags.

Failures during structural constraint check should throw an instance ofVerifyError .
The verification procedure presented above allows extended semantics for subroutines,

while still keeping bytecode secure. In our opinion, the subroutine semantics allowed by
the JVM specification[LY99,§4.9.6] is tailored to the implementation of the verification algo-
rithm provided by their authors. We believe that this is wrong since the implementation should
be tailored to the semantics, and not the opposite. So we have generalized the semantics of
subroutines, and provided an alternate verification procedure. In our generalized semantics,
subroutines are allowed to recurse, no ret addresses are invalidated by any subroutine return
(including itself), and subroutines may share or have more than one returning sites (ret byte-
code). Those restrictions to the subroutine semantics where clearly imposed by limitations of
the standard verification procedure, and not by real security threats.

5.5 Verification Example

The following method is used to illustrate the verification procedure. It is a constructor that
invokes the superclass constructor, catching exceptions and then do some “spaghetti” subrou-
tine use. The bytecode was hand written and does not pass the standard verification procedure.
However, the code demonstrates that subroutine semantics can be extended without damage.
Specially, it has out of order return from subroutines and a recursive subroutine call.

.method public<init>()V
.limit stack 2
.limit locals 5
aload 0

@1: invokespecial java/lang/Object/<init>()V
@4: iconst0

VERIFICATION EXAMPLE 43

istore 4
jsr @15
iconst1
istore 4
ret 2

@15: astore1
jsr @28
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 4
invokevirtual java/io/PrintStream/println(I)V
return

@28: astore2
jsr @34
ret 1

@34: astore3
aload 0
ifnonnull @45
fconst0
fstore 4
jsr @34

@45: ret 3
@47: pop

new java/lang/RuntimeException
dup
invokespecial java/lang/RuntimeException/<init>()V
athrow
.catch java/lang/Exception from @1 to @4 using @47

.end method

The first step of the verification procedure is to construct the control flow graph and the
information required to do the data flow analysis in a basic block basis. That can be seen in
Figure 5.1.

Once the control flow graph and basic block data flow information has been constructed,
we start doing the data flow analysis by iterating over a basic block work list.

Iteration 1 Processing BB[0], the input data flow item is:

this initialized: false
local frame: U[-1]XXXX
operand stack:empty

BB[4] is scheduled with input data flow item:

this initialized: true
local frame: LExample;XXXX
operand stack:empty

BB[47] is scheduled with input data flow item:

44 EFFICIENT BYTECODE VERIFICATION

max stack dec:
max stack inc:

written set:

stack delta:
0
1
{}

0

AULOAD 0
UPOPINIT java/lang/Object

BB[0]

max stack dec:
max stack inc:

written set:

stack delta:
0
1
{4}

1

IPUSH
IPOP
ISET 4
RPUSH @10

BB[4]

max stack dec:
max stack inc:

written set:

stack delta:
-1
0
{1}

0

AURSTORE 1
RPUSH @19

BB[15]

max stack dec:
max stack inc:

written set:

stack delta:
-1
0
{2}

0

AURSTORE 2
RPUSH @32

BB[28]

max stack dec:
max stack inc:

written set:

stack delta:
-1
0
{3}

-1

AURSTORE 3
AULOAD 0
APOP

BB[34]

max stack dec:
max stack inc:

written set:

stack delta:
-1
1
{}

-1

POP1
UPUSH @48
DUP1
UPOPINIT java/lang/RuntimeException
APOPSUBTYPE java/lang/Throwable

BB[47]

java/lang/Exception

max stack dec:
max stack inc:

written set:

stack delta:

{4}

1

1
0

FPUSH
FPOP
FSET 4
RPUSH @45

BB[39]
max stack dec:
max stack inc:

written set:

stack delta:
0
0
{3}

0

RENSURE 3

BB[45]

max stack dec:
max stack inc:

written set:

stack delta:
0
0

0

{1}RENSURE 1

BB[32]

max stack dec:
max stack inc:

written set:

stack delta:
0
1
{2,4}

0

IPUSH
IPOP
ISET 4
RENSURE 2

BB[10]

max stack dec:
max stack inc:

written set:

stack delta:

2
{}

0
0

APUSH java/io/PrintStream
IENSURE 4
IPUSH
IPOP
APOPSUBTYPE java/io/PrintStream
CHECKINIT

BB[19]

Figure 5.1: Verifier example control flow graph.

VERIFICATION EXAMPLE 45

this initialized: false
local frame: U[-1]XXXX
operand stack: Ljava/lang/Exception;

Iteration 2 Processing BB[4], the input data flow item is:

this initialized: true
local frame: LExample;XXXX
operand stack:empty

BB[15] is scheduled with input data flow item:

this initialized: true
local frame: LExample;XXXI
operand stack: R{(@10,{})}

Iteration 3 Processing BB[15], the input data flow item is:

this initialized: true
local frame: LExample;XXXI
operand stack: R{(@10,{})}

BB[28] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1})}XXI
operand stack: R{(@19,{})}

Iteration 4 Processing BB[28], the input data flow item is:

this initialized: true
local frame: LExample;R{(@10,{1})}XXI
operand stack: R{(@19,{})}

BB[34] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1,2})}R{(@19,{2})}XI
operand stack: R{(@32,{})}

Iteration 5 Processing BB[34], the input data flow item is:

46 EFFICIENT BYTECODE VERIFICATION

this initialized: true
local frame: LExample;R{(@10,{1,2})}R{(@19,{2})}XI
operand stack: R{(@32,{})}

BB[39] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3})}I
operand stack:empty

BB[45] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3})}I
operand stack:empty

Iteration 6 Processing BB[39], the input data flow item is:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3})}I
operand stack:empty

BB[34] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}XX
operand stack: R{(@32,{}),(@45,{})}

Iteration 7 Processing BB[34], the input data flow item is:

this initialized: true
local frame: LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}XX
operand stack: R{(@32,{}),(@45,{})}

BB[39] is scheduled with input data flow item:

this initialized: true
local frame:
LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}R{(@32,{3}),(@45,{3})}X
operand stack:empty

BB[45] is scheduled with input data flow item:

VERIFICATION EXAMPLE 47

this initialized: true
local frame:
LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}R{(@32,{3}),(@45,{3})}X
operand stack:empty

Iteration 8 Processing BB[39], the input data flow item is:

this initialized: true
local frame:
LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}R{(@32,{3}),(@45,{3})}X
operand stack:empty

Iteration 9 Processing BB[45], the input data flow item is:

this initialized: true
local frame:
LExample;R{(@10,{1,2,3,4})}R{(@19,{2,3,4})}R{(@32,{3}),(@45,{3})}X
operand stack:empty

BB[32] is scheduled with input data flow item:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3}),(@45,{3})}I
operand stack:empty

Iteration 10 Processing BB[32], the input data flow item is:

this initialized: true
local frame: LExample;R{(@10,{1,2,3})}R{(@19,{2,3})}R{(@32,{3}),(@45,{3})}I
operand stack:empty

BB[10] is scheduled with input data flow item:

this initialized: true
local frame:
LExample;R{(@10,{1,2,3})}R{(@19,{1,2,3})}R{(@32,{1,3}),(@45,{1,3})}I
operand stack:empty

Iteration 11 Processing BB[10], the input data flow item is:

48 EFFICIENT BYTECODE VERIFICATION

this initialized: true
local frame:
LExample;R{(@10,{1,2,3})}R{(@19,{1,2,3})}R{(@32,{1,3}),(@45,{1,3})}I
operand stack:empty

BB[19] is scheduled with input data flow item:

this initialized: true
local frame: LExam-
ple;R{(@10,{1,2,3,4})}R{(@19,{1,2,3,4})}R{(@32,{1,2,3,4}),(@45,{1,2,3,4})}I
operand stack:empty

Iteration 12 Processing BB[19], the input data flow item is:

this initialized: true
local frame: LExam-
ple;R{(@10,{1,2,3,4})}R{(@19,{1,2,3,4})}R{(@32,{1,2,3,4}),(@45,{1,2,3,4})}I
operand stack:empty

Iteration 13 Processing BB[47], the input data flow item is:

this initialized: false
local frame: U[-1]XXXX
operand stack: Ljava/lang/Exception;

5.6 What is Required to Go Further

As said before, the verification procedure gathers information that simplifies the bytecode
conversion to the intermediate representation (Chapter 6). This information comprises, for
each offset in the bytecode array, of:

1. A valid flag indicating if the offset is the start offset of an instruction.

2. A target flag indicating if the offset is the target of a branch or the entry point of an
exception handler.

3. A leaderflag indicating if the offset is the first instruction of its enclosing basic block.

4. A trailer flag indicating if the offset is the last instruction of its enclosing basic block.

5. A unreachableflag indicating if the instruction at this offset is not reachable, i.e. will
never be executed.

WHAT IS REQUIRED TO GO FURTHER 49

BYTECODE FIRST OPERAND SECOND OPERAND

baload boolean or byte array
astore reference or ret address

astore 0 reference or ret address
astore 1 reference or ret address
astore 2 reference or ret address
astore 3 reference or ret address
bastore boolean or byte array

pop integer, float,
reference or ret address

pop2 pair32, long or double
dup integer, float, reference

or ret address
dup x1 integer, float, reference integer, float, reference

or ret address or ret address
dup x2 integer, float, reference pair32, long or double

or ret address
dup2 pair32, long or double

dup2 x1 pair32, long or double integer, float, reference
or ret address

dup2 x2 pair32, long or double pair32, long or double
swap integer, float, reference integer, float, reference

or ret address or ret address

Table 5.2: Untyped bytecodes and their possible operands.

50 EFFICIENT BYTECODE VERIFICATION

6. A stack sizeinteger indicating the bytecode operand stack size prior to executing of
current instruction.

7. The type of the operands of untyped bytecodes, see Table 5.2.

Using this attributes computed during verification the conversion procedure can occur
without having to do any extra analysis. Table 5.2 displays the bytecodes that are untyped, i.e.
are allowed to handle multiple types, and the possible types of their operands. In the table,
pair32 represents all pair combinations of types: integer, float, reference and ret address.

Chapter 6

Bytecode Conversion

This chapter addresses issues regardingbytecode to intermediate representation conversion1.
The conversion takes place after bytecode verification. The conversion algorithm can thus
be simplified to rely on the checks already performed during verification. Extra information
gathered by the verifier is also used to simplify the identification of basic blocks and the
processing of untyped bytecodes (e.g.dup).

During the conversion, operations implicit to some bytecodes are made explicit. That can
be observed specially for bytecodes that may throwruntime exceptions. The code for checking
an exceptional situation — and throwing the exception — is placed right before the code that
implements the bytecode. The same happens when dealing with bytecodes that can trigger
class initialization. Breaking the bytecode into smaller and simpler operations increases the
chances of removing redundant code by the intermediate representation optimizer. Care was
taken not to discard semantic information when designing the intermediate language and its
converter.

The approach used for exception windows and handlers deserves special attention. After
conversion, exception windows are eliminated. Instead, the control information associated to
exception handling is stored within each operation giving more freedom for rearranging the
code. Exception handlers are expanded to explicitly check exception subtyping. The impact
of this approach over asynchronous exceptions is discussed.

We describe the solution we gave for implementing subroutines (jsr /ret). Subroutines
impose a lot of difficulties not only to the verifier, but also to the bytecode converter. The
main problem of subroutines deals with liveness information required to do accurategarbage
collection[ADM98]. It is a well-known problem related to the Java Virtual Machine. The
solution here described is not only simple and elegant, but also effective. It does not require
code duplication.

This chapter does not treat optimization. Although some of the examples herein were
hand-tuned for the sake of clarity, optimization is not central to this chapter. However, we do
expose the optimizations that could be done during conversion but were left out based on the
compiler motto:

1The termtranslationwould be a natural choice. However, the termconversionhas been adopted to avoid
confusion with the transformation from intermediate representation to machine language that occurs during the
TRANSLATE phase.

51

52 BYTECODE CONVERSION

Make each compilation stage as simple and clear as possible.
Achieve a reliable and effective code by grouping them together.

6.1 Intermediate Representation Presentation

The intermediate representation(IR) was crafted to be a fine-grained optimization-aware rep-
resentation of Java programs. It is more flexive than bytecode, and also machine independent.
This section gives a shallow presentation of the IR features. For a complete reference check
Appendix A.

The IR is typed, it works with five types: integers (32-bit signed), long integers (64-
bit signed), floats, doubles and references. For each type there is a set of virtually infinite
registers. Table 6.1 describes valid register indices for each type.

TYPE VALID INDICES

integer {n | n%5 = 0}
long integer {n | n%5 = 1}

float {n | n%5 = 2}
double {n | n%5 = 3}

reference {n | n%5 = 4}

Table 6.1: Valid register indices for each IR type.

Each method, when translated to the IR, consists of a sequence ofIR statementsforming
an IR program. Each IR program has its own set of registers which is not shared with others.
Communication between IR programs is done through heap memory and parameters passed
on calls.

An IR statementis a tree ofIR opcodeswhere the root is an untyped IR opcode. It may be
control related or not, may define registers, write memory, call other IR programs, etc.

The IR opcodesare the building blocks of the intermediate language. Each IR opcode de-
fines an operation which may have arguments (provided by other IR opcodes), a result and at-
tributes. There are IR opcodes for doing arithmetics, reading/writing memory, using/defining
registers, converting between types, allocating memory, synchronization, receiving/passing
parameters, calling methods, among others.

Next section gives a broad idea of the intermediate language by showing various examples
of conversion from bytecode.

6.2 Conversion Examples

The examples provided by this section were based on the examples used to explain source to
bytecode compilation in [LY99,§7]. Those examples were borrowed not only because they
are a good way to introduce the matter, but also because they cover most of the constructs we
would like to show.

CONVERSION EXAMPLES 53

The translation from Java source code to bytecode is assumed to be known by the reader.
Readers not familiar with Java source code to bytecode translation should check [LY99,§6
and§7].

6.2.1 Constants, Local Variables, and Control Constructs

We start looking at a very simple example, thespin method. It is a bounded loop with empty
body.

void spin() {
for (int i = 0; i < 100; i++)

;
}

The translation from Java source to bytecode is given.

.method spin()V
.limit stack 2
.limit locals 2
iconst0
istore 1
goto @8

@5: iinc 1 1
@8: iload 1

bipush 100
if icmplt @5
return

.end method

The conversion from bytecode to the intermediate language of methodspin is the fol-
lowing.

1. areceive (%4, #Example)
2. idefine (%0, iconst ($0))
3. jump (@8)
4. label (@5)
5. idefine (%0, iadd (iuse (%0), iconst ($1)))
6. label (@8)
7. ijump (LT, iuse (%0), iconst ($100), @5)
8. vreturn ()

The first statement defines register%4with the this parameter, note thatspin is not
a static method. The type of thethis parameter is the class wherespin was declared,
Example . Next variablei , binded to register%0, is initialized with value0 in statement 2.
Statement 3 transfers unconditionally the execution to statement 6. Statements 4 and 6 simply
defines labels used as target of control statements. The loop body is basically two statements:
5 and 7. Statement 7 checks if register%0is less than constant100 keeping the execution in

54 BYTECODE CONVERSION

the loop. Statement 5 increments variablei by adding to register%0the constant1. Finally,
when leaving the loop, thevoid method returns in statement 8.

Some points can be highlighted when looking at the IR program for thespin method.
First, stack based operations are converted to tree based expressions. Tree based expres-
sions are easier to handle when rearranging code. Second, similar operations are represented
equally. The bytecodesiconst 0 andbipush 100 do something similar, push an integer
constant. They were unified in the IR opcodeiconst . Finally, resources that were limited in
the bytecode are not yet limited in the IR program.

Next example is thedouble version of thespin method.

void dspin() {
for (double i = 0.0; i < 100.0; i++)

;
}

The translation of thedspin method from Java source code to bytecode is given below.

.method dspin()V
.limit stack 4
.limit locals 3
dconst0
dstore1
goto @9

@5: dload1
dconst1
dadd
dstore1

@9: dload1
ldc2 w 100.0
dcmpg
iflt @5
return

.end method

The conversion from Java bytecodes to IR is similar to that of thespin method. There
are a few differences though. Variablei is binded to double register%3. IR operations are
typed so the name of operations with doubles start with letterd instead of letteri .

1. areceive (%4, #Example)
2. ddefine (%3, dconst ($0.0))
3. jump (@9)
4. label (@5)
5. ddefine (%3, dstrict (dadd (duse (%3), dconst ($1.0))))
6. label (@9)
7. ijump (LT, dcmpg(duse (%3), dconst ($100.0)), iconst ($0), @5)
8. vreturn ()

CONVERSION EXAMPLES 55

The greatest difference is thedstrict opcode. This opcode doesvalue set conver-
sion[LY99, §2.6.6]. Value set conversion remaps values with extended exponents — as al-
lowed in the semantics of floats and doubles — to the standard encoding. This conversion
may lead to underflow or overflow and is required at some points in the bytecode. In method
dspin , extended exponents are allowed in intermediate stack values, but not in frame slots.
So it is necessary to generate adstrict opcode before writing back register%3in statement
5.

The next example is thedoubleLocals method which receives two doubles as param-
eters and returns their sum.

double doubleLocals(double d1, double d2) {
return d1+d2;

}

The bytecode generated for thedoubleLocals is shown below. The main reason of this
example is showing that double variables use two slots in the frame.

.method doubleLocals(DD)D
.limit stack 4
.limit locals 5
dload 1
dload 3
dadd
dreturn

.end method

The IR program fordoubleLocals obtained from bytecode is very simple. It consists
of four statements. The first three are parameter receiving statements. The fourth does all the
job, sums the values passed as parameters and returns from thedouble method.

1. areceive (%4, #Example)
2. dreceive (%3)
3. dreceive (%8)
4. dreturn (dadd (duse (%3), duse (%8)))

The following example is thesspin method. It has exactly the same functionality as the
spin method except that the loop counter was declared as short integer.

void sspin() {
for (short i = 0; i < 100; i++)

;
}

The translation to bytecode of thesspin method is shown below. Thei2s bytecode is
used to keep variablei value within the short integer range.

56 BYTECODE CONVERSION

.method sspin()V
.limit stack 2
.limit locals 2
iconst0
istore 1
goto @10

@5: iload 1
iconst1
iadd
i2s
istore 1

@10: iload 1
bipush 100
if icmplt @5
return

.end method

The conversion from Java bytecode to IR is similar to that of thespin method. The only
difference appears in statement 5 where ai2s opcode is used.

1. areceive (%4, #Example)
2. idefine (%0, iconst ($0))
3. jump (@10)
4. label (@5)
5. idefine (%0, i2s (iadd (iuse (%0), iconst ($1))))
6. label (@10)
7. ijump (LT, iuse (%0), iconst ($100), @5)
8. vreturn ()

6.2.2 Arithmetic

The align2grain method is used to show how arithmetic expressions are handled in the
IR.

int align2grain(int i, int grain) {
return (i+grain-1)&˜(grain-1);

}

The translation of methodalign2grain from Java source code to bytecode is straight-
forward. Note that the logical negation operation (˜ operator) is not supported on bytecode.
It is implemented by applying anexclusive oroperation over the operand and the integer
constant-1 .

.method align2grain(II)I
.limit stack 3
.limit locals 3
iload 1
iload 2

CONVERSION EXAMPLES 57

iadd
iconst1
isub
iload 2
iconst1
isub
iconstm1
ixor
iand
ireturn

.end method

The conversion of bytecode to IR is also straightforward. The expression, as appeared in
the Java source, is extracted from the stack based bytecode and rewritten as an expression tree
in statement 4.

1. areceive (%4, #Example)
2. ireceive (%0)
3. ireceive (%5)
4. ireturn (iand (isub (iadd (iuse (%0), iuse (%5)), iconst ($1)), ixor (isub (

iuse (%5), iconst ($1)), iconst ($-1))))

6.2.3 More Control Examples

The whileInt method implements the same functionality as thespin method using the
whileconstruct.

void whileInt() {
int i = 0;
while (i < 100)

i++;
}

The bytecode generated from thewhileInt method is actually the same bytecode as the
one generated from thespin method. It is provided below.

.method whileInt()V
.limit stack 2
.limit locals 2
iconst0
istore 1
goto @8

@5: iinc 1 1
@8: iload 1

bipush 100
if icmplt @5
return

.end method

58 BYTECODE CONVERSION

The conversion of thewhileInt method from bytecode to IR also yields the same result.

1. areceive (%4, #Example)
2. idefine (%0, iconst ($0))
3. jump (@8)
4. label (@5)
5. idefine (%0, iadd (iuse (%0), iconst ($1)))
6. label (@8)
7. ijump (LT, iuse (%0), iconst ($100), @5)
8. vreturn ()

Next example is thewhileDouble method that is a slightly modified version of the
dspin method using thewhileconstruct.

void whileDouble() {
double i = 0.0;
while (i < 100.1)

i++;
}

Its translation to bytecode is provided below.

.method whileDouble()V
.limit stack 4
.limit locals 3
dconst0
dstore1
goto @9

@5: dload1
dconst1
dadd
dstore1

@9: dload1
ldc2 w 100.1
dcmpg
iflt @5
return

.end method

As expected, the conversion of thewhileDouble method provides a result similar to the
one obtained from the conversion of thedspin method.

1. areceive (%4, #Example)
2. ddefine (%3, dconst ($0.0))
3. jump (@9)
4. label (@5)
5. ddefine (%3, dstrict (dadd (duse (%3), dconst ($1.0))))
6. label (@9)
7. ijump (LT, dcmpg(duse (%3), dconst ($100.1)), iconst ($0), @5)
8. vreturn ()

CONVERSION EXAMPLES 59

The following example is thelessThan100 method. This method receives a double
parameter and returns1 if it is less than100.0 , or -1 otherwise.

int lessThan100(double d) {
if (d < 100.0)

return 1;
else

return -1;
}

The translation of methodlessThan100 to bytecode is presented below. Note that the
dcmpg/ifge bytecodes are used; if parameterd is NaN, the lessThan100 method will
return-1 .

.method lessThan100(D)I
.limit stack 4
.limit locals 3
dload 1
ldc2 w 100.0
dcmpg
ifge @10
iconst1
ireturn

@10: iconstm1
ireturn

.end method

The conversion of methodlessThan100 from bytecode to IR is straightforward.

1. areceive (%4, #Example)
2. dreceive (%3)
3. ijump (GE, dcmpg(duse (%3), dconst ($100.0)), iconst ($0), @10)
4. ireturn (iconst ($1))
5. label (@10)
6. ireturn (iconst ($-1))

The next example is methodgreaterThan100 . It is similar to thelessThan100
method.

int greaterThan100(double d) {
if (d > 100.0)

return 1;
else

return -1;
}

The difference in the translation to bytecode from thelessThan100 method and the
greaterThan100 method is theif test which usesdcmpl /ifle instead ofdcmpg/ifge
bytecodes.

60 BYTECODE CONVERSION

.method greaterThan100(D)I
.limit stack 4
.limit locals 3
dload 1
ldc2 w 100.0
dcmpl
ifle @10
iconst1
ireturn

@10: iconstm1
ireturn

.end method

The conversion of methodgreaterThan100 from bytecode to IR is also straightfor-
ward.

1. areceive (%4, #Example)
2. dreceive (%3)
3. ijump (LE, dcmpl (duse (%3), dconst ($100.0)), iconst ($0), @10)
4. ireturn (iconst ($1))
5. label (@10)
6. ireturn (iconst ($-1))

6.2.4 Receiving Arguments

Two examples are provided to show how arguments are received in the IR. It is not any differ-
ent from the code already shown in the examples presented so far.

The first example is theaddTwo method. It receives two integer arguments and returns
its sum. Note that theaddTwo method was not declared as a static method.

int addTwo(int i, int j) {
return i+j;

}

The translation of methodaddTwo from Java source code to bytecode is presented below.

.method addTwo(II)I
.limit stack 2
.limit locals 3
iload 1
iload 2
iadd
ireturn

.end method

The conversion of methodaddTwo is shown below. Statements 1 to 3 areparameter
receivingstatements. In statement 1, thethis parameter is stored in reference register%4

CONVERSION EXAMPLES 61

with associated type#Example . In statements 2 and 3, parametersi and j are stored into
integer registers%0and%5, respectively. Finally, statement 4 adds the two integers and returns
the result.

1. areceive (%4, #Example)
2. ireceive (%0)
3. ireceive (%5)
4. ireturn (iadd (iuse (%0), iuse (%5)))

The second example is theaddTwoStatic method. It is similar to theaddTwo method
except that is was declared as a static method.

static int addTwoStatic(int i, int j) {
return i+j;

}

The translation of theaddTwoStatic method to bytecode is shown below.

.method static addTwoStatic(II)I
.limit stack 2
.limit locals 2
iload 0
iload 1
iadd
ireturn

.end method

The IR program obtained from the conversion of methodaddTwoStatic is exactly the
same IR program obtained from theaddTwo method, except that statement 1 was removed.
This occurred because theaddTwo method is static and does not receive thethis implicit
parameter.

1. ireceive (%0)
2. ireceive (%5)
3. ireturn (iadd (iuse (%0), iuse (%5)))

6.2.5 Invoking Methods

The add12and13 method is used to show how method invocation is handled in the IR. It
simply invokes theaddTwo method passing constants12 and13 as parameters.

int add12and13() {
return addTwo(12, 13);

}

62 BYTECODE CONVERSION

The bytecode result of the translation of methodadd12and13 is shown below. It pushes
onto the local operand stack thethis reference and integer constants12 and13 respectively.
In the sequence, theaddTwo method is invoked and the result of its execution is kept on the
top of the operand stack. Finally, it is used as the return value of methodadd12and13 .

.method add12and13()I
.limit stack 3
.limit locals 1
aload 0
bipush 12
bipush 13
invokevirtual Example/addTwo(II)I
ireturn

.end method

The conversion of methodadd12and13 from bytecode to IR is the following.

1. areceive (%4, #Example)
2. ipass (iconst ($13))
3. ipass (iconst ($12))
4. apass (ause (%4))
5. call (mlookup (getclass (ause (%4)),[10]),[$Example ,12,61])
6. iresult (%0)
7. ireturn (iuse (%0))

The IR program for methodadd12and13 requires some explanation. Statement 1 de-
fines reference register%4with the this parameter becauseadd12and13 is not a static
method. Statements 2 to 4 are parameter passing statements to the subsequent call that will
occur in statement 5. The parameters are passed fromright-to-left — instead ofleft-to-right
as adopted in the Java bytecode — therefore integer constants12 , 13 and the implicitthis
reference are passed, respectively.

Statement 5 implements a method invocation (IR program call). It uses the IR program at
dispatch index10 of a class object to transfer execution (mlookup opcode). This is avirtual
invocation, and thus the invoked method depends on the actual type of the object pointed by
the this reference (its class is retrieved using thegetclass opcode). The index10 is
the dispatch index of methodaddTwo assigned during the LOAD phase of classExample .
Finally, the triple that can be seen in statement 5 is astack traceinformation. If a stack
trace is requested during theaddTwo call, the 12th declared method of classExample (the
add12and13 method actually) and line61 of its source file will be included in the stack
trace2.

In statement 6, the result of the invocation of methodaddTwo is assigned to integer reg-
ister%0. In statement 7 integer register%0is used as the return value.

The next example is the static version of methodadd12and13 . TheaddStatic12and13
method simply invokes static methodaddTwoStatic passing as parameters the integer con-
stants12 and13 .

2The stack trace information is not solely a triple, but a triple list, which can be empty or have more than one
triple. This enables inlining optimizations to occur without damaging stack traces, for instance.

CONVERSION EXAMPLES 63

int addStatic12and13() {
return addTwoStatic(12, 13);

}

The translation from Java source to bytecode of methodaddStatic12and13 is shown
below.

.method addStatic12and13()I
.limit stack 2
.limit locals 1
bipush 12
bipush 13
invokestatic Example/addTwoStatic(II)I
ireturn

.end method

The IR program obtained from the conversion of methodaddStatic12and13 is sim-
ilar to the IR program obtained from methodadd12and13 . There is a difference though.
Since the method being called is static, the class used by themlookup opcode is known at
conversion time, and its reference is provided using theaclass opcode.

1. areceive (%4, #Example)
2. ipass (iconst ($13))
3. ipass (iconst ($12))
4. call (mlookup (aclass ($Example),[19]),[$Example ,13,65])
5. iresult (%0)
6. ireturn (iuse (%0))

The following example shows a bit more about method invocation. Two methods are
examined:getItNear and getItFar . Both methods use non-virtual instance method
invocation to delegate execution.

class Near {

int it;

public int getItNear() {
return getIt();

}

private int getIt() {
return it;

}

}

class Far extends Near {

int getItFar() {

64 BYTECODE CONVERSION

return super.getItNear();
}

}

The following bytecode is the translation of methodgetItNear . Since it delegates
execution to a private method,invokespecial is used.

.method public getItNear()I
.limit stack 1
.limit locals 1
aload 0
invokespecial Near/getIt()I
ireturn

.end method

The following bytecode is the translation of methodgetItFar . Since it delegates exe-
cution to a superclass method,invokespecial is used.

.method getItFar()I
.limit stack 1
.limit locals 1
aload 0
invokespecial Near/getItNear()I
ireturn

.end method

The conversion of methodgetItNear is similar to the method invocation examples
shown so far. Note that theinvokespecial method is known at conversion time, thus
aclass is used in statement 3.

1. areceive (%4, #Near)
2. apass (ause (%4))
3. call (mlookup (aclass ($Near),[8]),[$Near ,1,75])
4. iresult (%0)
5. ireturn (iuse (%0))

The conversion of methodgetItFar is similar to the method invocation examples shown
so far. Note that theinvokespecial method is known at conversion time, thusaclass
is used in statement 3.

1. areceive (%4, #Far)
2. apass (ause (%4))
3. call (mlookup (aclass ($Near),[5]),[$Far ,1,86])
4. iresult (%0)
5. ireturn (iuse (%0))

CONVERSION EXAMPLES 65

6.2.6 Working with Class Instances

The next example is methodcreate that instantiate classObject and returns the newly
created instance.

Object create() {
return new Object();

}

The translation from Java source code to bytecode is shown below. The instantiation
consists of allocating heap space for the new object (new bytecode) and invoking a constructor
over it (invokespecial bytecode).

.method create()Ljava/lang/Object;
.limit stack 2
.limit locals 1
new java/lang/Object
dup
invokespecial java/lang/Object/<init>()V
areturn

.end method

The conversion of methodcreate to IR is the following. The usage of thenewinstance
opcode is shown in statement 2. Thenewinstance opcode has as arguments the class to
be instantiated; hereObject provided by theaclass opcode. Like invocation opcodes, the
newinstance opcode also provides stack trace information. The newly created instance
becomes available in statement 3 where register%4is defined with a reference to it.

1. areceive (%4, #Example)
2. newinstance (aclass ($java/lang/Object),[$Example ,14,69])
3. aresult (%4, #java/lang/Object)
4. apass (ause (%4))
5. call (mlookup (aclass ($java/lang/Object),[12]),[$Example ,14,69]

)
6. areturn (ause (%4))

Next we present two more methods:example and silly . The example method
instantiates classMyObj and returns by calling thesilly method. Thesilly method
does a useless null reference test, on the received reference, and returns it anyway.

MyObj example() {
MyObj o = new MyObj();
return silly(o);

}

MyObj silly(MyObj o) {
if (o != null)

return o;

66 BYTECODE CONVERSION

else
return o;

}

The translation of methodexample from Java source code to bytecode is shown below.

.method example()LMyObj;
.limit stack 2
.limit locals 2
new MyObj
dup
invokespecial MyObj/<init>()V
astore1
aload 0
aload 1
invokevirtual Example/silly(LMyObj;)LMyObj;
areturn

.end method

The translation of methodsilly from Java source code to bytecode is shown below.

.method silly(LMyObj;)LMyObj;
.limit stack 1
.limit locals 2
aload 1
ifnull @6
aload 1
areturn

@6: aload1
areturn

.end method

The conversion of methodexample from bytecode to IR is shown below. The usage of
the init opcode is shown in statement 2.

Instantiating a class requires its initialization prior to allocating the new object. As shown
above in methodcreate , the initialization of the class being instantiated,Object , is re-
dundant. In that case, the initialization is redundant because the class that declared method
create , Example , executes only after its initialization and is a subclass of the class to be
initialized. Since class initialization is only successful after superclass initialization theinit
operation can be suppressed.

1. areceive (%4, #Example)
2. init (aclass ($MyObj),[$Example ,15,73])
3. newinstance (aclass ($MyObj),[$Example ,15,73])
4. aresult (%9, #MyObj)
5. apass (ause (%9))
6. call (mlookup (aclass ($MyObj),[6]),[$Example ,15,73])
7. apass (ause (%9))

CONVERSION EXAMPLES 67

8. apass (ause (%4))
9. call (mlookup (getclass (ause (%4)),[19]),[$Example ,15,74])

10. aresult (%4, #MyObj)
11. areturn (ause (%4))

The conversion of methodsilly from bytecode to IR is straightforward.

1. areceive (%4, #Example)
2. areceive (%9, #MyObj)
3. ajump (EQ, ause (%9), anull (), @6)
4. areturn (ause (%9))
5. label (@6)
6. areturn (ause (%9))

The next example shows how an integer instance field is written and read in methods
setIt andgetIt , respectively.

int i;

void setIt(int value) {
i = value;

}

int getIt() {
return i;

}

The following bytecode is obtained from the translation of methodsetIt .

.method setIt(I)V
.limit stack 2
.limit locals 2
aload 0
iload 1
putfield Example/i I
return

.end method

The following bytecode is obtained from the translation of methodgetIt .

.method getIt()I
.limit stack 1
.limit locals 1
aload 0
getfield Example/i I
ireturn

.end method

68 BYTECODE CONVERSION

The conversion of methodsetIt is shown below. Theistore is used in statement 3.
Its first argument is the reference to the object being written, thethis reference read from
register%4. Its second argument is the integer value to be written, the parameter value read
from register%0. Two attributes make up theistore opcode: the field offset in the instance
(dynamic) field area (using the encoding described in Section 4.4); and a volatile write flag.

1. areceive (%4, #Example)
2. ireceive (%0)
3. istore (ause (%4),dynamic(0,0),false, iuse (%0))
4. vreturn ()

The conversion of methodgetIt is shown below. Theiload opcode is used similarly
as in theistore opcode insetIt IR program.

1. areceive (%4, #Example)
2. ireturn (iload (ause (%4),dynamic(0,0),false))

6.2.7 Arrays

ThecreateBuffer method is an example of how to instantiate integer arrays and access
its elements.

void createBuffer() {
int buffer[];
int bufsz = 100;
int value = 12;
buffer = new int[bufsz];
buffer[10] = value;
value = buffer[11];

}

The translation of methodcreateBuffer from Java source code to bytecode is shown
below.

.method createBuffer()V
.limit stack 3
.limit locals 4
bipush 100
istore 2
bipush 12
istore 3
iload 2
newarray int
astore1
aload 1
bipush 10
iload 3
iastore
aload 1

CONVERSION EXAMPLES 69

bipush 11
iaload
istore 3
return

.end method

The following IR program was obtained from the conversion of methodcreateBuffer .
Special attention should be given to statements 4, 6 and 7. In statement 4, a new integer
array is being instantiated using thenewarray opcode. The arguments of thenewarray
opcode are the array class to be instantiated and the desired length of the new array. The
new instance becomes available in statement 5 when register%9is defined with its reference.
In statements 6 and 7, IR opcodesiastore and iaload are used to write and read array
elements, respectively. Both opcodes receive as arguments the array to be accessed and the
element index. In the case of theiastore opcode, an extra argument is the value to be
written. Theiaload opcode provides the value read from the array.

1. areceive (%4, #Example)
2. idefine (%0, iconst ($100))
3. idefine (%5, iconst ($12))
4. newarray (aclass ($[I), iuse (%0),[$Example ,19,98])
5. aresult (%9, #[I)
6. iastore (ause (%9), iconst ($10), iuse (%5))
7. idefine (%5, iaload (ause (%9), iconst ($11)))
8. vreturn ()

The next example is methodcreateThreadArray . The createThreadArray
method instantiates aThread array and initializes its first element with a new instance.

void createThreadArray() {
Thread threads[];
int count = 10;
threads = new Thread[count];
threads[0] = new Thread();

}

The translation of methodcreateThreadArray from Java source code to bytecode is
shown below.

.method createThreadArray()V
.limit stack 4
.limit locals 3
bipush 10
istore 2
iload 2
anewarray java/lang/Thread
astore1
aload 1
iconst0

70 BYTECODE CONVERSION

new java/lang/Thread
dup
invokespecial java/lang/Thread/<init>()V
aastore
return

.end method

The following IR program is obtained from the conversion of methodcreateThreadArray .
Theaastore is the only IR opcode not presented before. It writes a reference read from reg-
ister%14to index$0 of array read from register%9.

1. areceive (%4, #Example)
2. idefine (%10, iconst ($10))
3. newarray (aclass ($[Ljava/lang/Thread;), iuse (%10),[$Example ,20,

106])
4. aresult (%9, #[Ljava/lang/Thread;)
5. init (aclass ($java/lang/Thread),[$Example ,20,107])
6. newinstance (aclass ($java/lang/Thread),[$Example ,20,107])
7. aresult (%14, #java/lang/Thread)
8. apass (ause (%14))
9. call (mlookup (aclass ($java/lang/Thread),[44]),[$Example ,20,107]

)
10. aastore (ause (%9), iconst ($0), ause (%14))
11. vreturn ()

Thecreate3DArray method is an example of how multidimensional arrays are created
in the IR. It instantiates two dimensions of a three dimensional integer array and returns the
newly created instance.

int[][][] create3DArray() {
int grid[][][];
grid = new int[10][5][];
return grid;

}

The translation of methodcreate3DArray from Java source to bytecode is shown be-
low. The multidimensional array is created using themultianewarray bytecode.

.method create3DArray()[[[I
.limit stack 2
.limit locals 2
bipush 10
iconst5
multianewarray [[[I 2
astore1
aload 1
areturn

.end method

CONVERSION EXAMPLES 71

The IR program for thecreate3DArray method is shown below. Since the IR does
not support a multidimensional opcode, the instantiation is implemented by nesting loops and
instantiating each array at its time. Statement 2 instantiates the first dimension array with
length$10 . Statements 4 to 10 is the loop that executes$10 times instantiating the second
dimension arrays with length$5 .

1. areceive (%4, #Example)
2. newarray (aclass ($[[[I), iconst ($10),[$Example ,21,112])
3. aresult (%9, #[[[I)
4. idefine (%0, iconst ($0))
5. label (@6)
6. newarray (aclass ($[[I), iconst ($5),[$Example ,21,112])
7. aresult (%14, #[[I)
8. aastore (ause (%9), iuse (%0), ause (%14))
9. idefine (%0, iadd (iuse (%0), iconst ($1)))

10. ijump (LT, iuse (%0), iconst ($10), @6)
11. areturn (ause (%9))

6.2.8 Compiling Switches

This section presents two examples of compilingswitchstatements. The first is implemented
using atableswitch bytecode, and the second using alookupswitch bytecode. As
shown, both table driven control transfer bytecodes are mapped to a single IR opcode.

The first example is thechooseNear method shown below.

int chooseNear(int i) {
switch (i) {
case 0: return 0;
case 1: return 1;
case 2: return 2;
default: return -1;
}

}

The translation of methodchooseNear from Java source code to bytecode is the follow-
ing. The Java compiler detects that thecasevalues are sequential and generates atableswitch
bytecode.

.method chooseNear(I)I
.limit stack 1
.limit locals 2
iload 1
tableswitch 0

@28
@30
@32
default: @34

@28: iconst0
ireturn

72 BYTECODE CONVERSION

@30: iconst1
ireturn

@32: iconst2
ireturn

@34: iconstm1
ireturn

.end method

The conversion of methodchooseNear to IR program is shown below. Theiswitch
is used to implement the table driven control transfer in statement 3. Theiswitch opcode
does not define how the control transfer is done, it only defines a map between integer values
and labels. Also theiswitch does not define a label for default (not mapped) values; if a
not mapped value is used as argument theiswitch opcode will simply falls through. The
default transfer should then be done in the next statement (thejump opcode in statement 4
transfers execution to default label@34).

1. areceive (%4, #Example)
2. ireceive (%0)
3. iswitch (iuse (%0),[$0 , @28][$1 , @30][$2 , @32])
4. jump (@34)
5. label (@28)
6. ireturn (iconst ($0))
7. label (@30)
8. ireturn (iconst ($1))
9. label (@32)

10. ireturn (iconst ($2))
11. label (@34)
12. ireturn (iconst ($-1))

The secondswitchexample is methodchooseFar shown below.

int chooseFar(int i) {
switch (i) {
case -100: return -1;
case 0: return 0;
case 100: return 1;
default: return -1;
}

}

The translation of methodchooseFar from Java source code to bytecode is below. Since
switch key values are not sequential the Java compiler generates alookupswitch bytecode.

.method chooseFar(I)I
.limit stack 1
.limit locals 2
iload 1
lookupswitch

-100: @36

CONVERSION EXAMPLES 73

0: @38
100: @40
default: @42

@36: iconstm1
ireturn

@38: iconst0
ireturn

@40: iconst1
ireturn

@42: iconstm1
ireturn

.end method

The conversion of methodchooseFar is shown below. It is similar to the conversion of
methodchooseNear , also using theiswitch opcode.

1. areceive (%4, #Example)
2. ireceive (%0)
3. iswitch (iuse (%0),[$-100 , @36][$0 , @38][$100 , @40])
4. jump (@42)
5. label (@36)
6. ireturn (iconst ($-1))
7. label (@38)
8. ireturn (iconst ($0))
9. label (@40)

10. ireturn (iconst ($1))
11. label (@42)
12. ireturn (iconst ($-1))

6.2.9 Operations on the Operand Stack

The next example is methodnextIndex shown below. It provides a read and increment
index generation procedure.

private long index = 0;

public long nextIndex() {
return index++;

}

The translation of methodnextIndex from Java source code to bytecode is the follow-
ing.

.method public nextIndex()J
.limit stack 7
.limit locals 1
aload 0
dup
getfield Example/index J

74 BYTECODE CONVERSION

dup2x1
lconst1
ladd
putfield Example/index J
lreturn

.end method

The IR program obtained from the conversion of methodnextIndex is shown below.

1. areceive (%4, #Example)
2. ldefine (%1, lload (ause (%4),dynamic(0,0),false))
3. lstore (ause (%4),dynamic(0,0),false, ladd (luse (%1), lconst ($1)))
4. lreturn (luse (%1))

6.2.10 Throwing and Handling Exceptions

This section presents four examples of throwing and handling exceptions. They provide an
overview of the IR support for exception handling. The presentation is completed in the next
section when we describe the conversion oftry/finally constructs.

The first example is methodcanBeZero . It instantiates and throws an exception if the
integer parameter is zero.

void cantBeZero(int i) throws TestExc {
if (i == 0)

throw new TestExc();
}

The translation of methodcanBeZero from Java source code to bytecode is shown be-
low.

.method cantBeZero(I)V
.limit stack 2
.limit locals 2
iload 1
ifne @12
new TestExc
dup
invokespecial TestExc/<init>()V
athrow

@12: return
.end method

The conversion of methodcanBeZero from bytecode to IR is below. Theathrow is
used to throw the newly created exception into the caller method frame (statement 9).

1. areceive (%4, #Example)
2. ireceive (%0)

CONVERSION EXAMPLES 75

3. ijump (NE, iuse (%0), iconst ($0), @12)
4. init (aclass ($TestExc),[$Example ,25,141])
5. newinstance (aclass ($TestExc),[$Example ,25,141])
6. aresult (%9, #TestExc)
7. apass (ause (%9))
8. call (mlookup (aclass ($TestExc),[12]),[$Example ,25,141])
9. athrow (ause (%9))

10. label (@12)
11. vreturn ()

The next example is methodcatchOne . It calls methodtryItOut protected by an
exception handler that calls methodhandleExc if a TextExc exception occur.

void catchOne() {
try {

tryItOut();
} catch (TestExc e) {

handleExc(e);
}

}

The translation of methodcatchOne from Java source to bytecode is below. An excep-
tion window is defined from label@0inclusive to label@4exclusive with the handler at label
@7.

.method catchOne()V
.limit stack 2
.limit locals 2

@0: aload0
invokevirtual Example/tryItOut()V

@4: goto @13
@7: astore1

aload 0
aload 1
invokevirtual Example/handleExc(LTestExc;)V

@13: return
.catch TestExc from @0 to @4 using @7

.end method

The conversion of methodcatchOne from bytecode to IR is shown below. In statement
3, thecallx opcode is used instead of acall opcode once exceptions thrown during the call
are handled by the current IR program and not delegated to the caller IR program. Thecallx
opcode has exactly the same semantics as thecall opcode except that it defines a label as
exception catching entry point(@15is the exception catching entry point for the exception
window that encloses thetryItOut call). Statements 11 to 14 implements explicit exception
catching, subtype testing, handler delegation or rethrowing. Statement 12 defines register%9
with the reference of the exception thrown during thetryItOut call. Statement 13 tests if
the catched exception is a subtype of classTestExc . If true the control is transfered to the

76 BYTECODE CONVERSION

exception handler at label@7. Otherwise, the exception is rethrown in the frame of the caller
method in statement 14.

1. areceive (%4, #Example)
2. apass (ause (%4))
3. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,28,152], @15)
4. jump (@13)
5. label (@7)
6. apass (ause (%9))
7. apass (ause (%4))
8. call (mlookup (getclass (ause (%4)),[30]),[$Example ,28,154])
9. label (@13)

10. vreturn ()
11. label (@15)
12. acatch (%9)
13. ijump (NE, subtypeof (getclass (ause (%9)), aclass ($TestExc)), iconst (

$0), @7)
14. athrow (ause (%9))

The next example, methodcatchTwo , is a variant of the previous example that defines
two exception handlers for methodtryItOut .

void catchTwo() {
try {

tryItOut();
} catch (TestExc1 e) {

handleExc(e);
} catch (TestExc2 e) {

handleExc(e);
}

}

The translation of methodcatchTwo from Java source code to bytecode is shown below.
Two exception windows are defined for the same code segment (@0inclusive to@4exclusive),
however the test forTestExc1 exception occurrence is done before the test forTestExc2
exception occurrence.

.method catchTwo()V
.limit stack 2
.limit locals 3

@0: aload0
invokevirtual Example/tryItOut()V

@4: goto @22
@7: astore1

aload 0
aload 1
invokevirtual Example/handleExc(LTestExc;)V
goto @22

@16: astore2
aload 0

CONVERSION EXAMPLES 77

aload 2
invokevirtual Example/handleExc(LTestExc;)V

@22: return
.catch TestExc1 from @0 to @4 using @7
.catch TestExc2 from @0 to @4 using @16

.end method

The conversion of methodcatchTwo is similar to the conversion of methodcatchOne .
In statement 3, acallx is also used defining label@24as exception catching entry point.
The major difference is on the code that catches the exception in statements 16 through 22.
Statements 18 and 19 implement the test forTestExc1 subtyping. On success, they transfer
the execution to its handler at label@7. On subtyping failure, the exception catching is dele-
gated to the enclosing exception window, which tests forTestExc2 subtyping in a similar
manner (statements 20 to 22).

1. areceive (%4, #Example)
2. apass (ause (%4))
3. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,29,160], @24)
4. jump (@22)
5. label (@7)
6. apass (ause (%9))
7. apass (ause (%4))
8. call (mlookup (getclass (ause (%4)),[30]),[$Example ,29,162])
9. jump (@22)

10. label (@16)
11. apass (ause (%9))
12. apass (ause (%4))
13. call (mlookup (getclass (ause (%4)),[30]),[$Example ,29,164])
14. label (@22)
15. vreturn ()
16. label (@24)
17. acatch (%9)
18. ijump (EQ, subtypeof (getclass (ause (%9)), aclass ($TestExc1)), iconst (

$0), @25)
19. jump (@7)
20. label (@25)
21. ijump (NE, subtypeof (getclass (ause (%9)), aclass ($TestExc2)), iconst (

$0), @16)
22. athrow (ause (%9))

As probably noted by the reader, the exception catching scheme — implicit on bytecode —
is made explicit in the IR program. Protected calls define their exception catching labels as the
entry points associated to its first enclosing exception window. The exception catching code
for each exception window tests for exception subtyping, transfering the control to its handler;
otherwise it delegates the catching to its enclosing exception window or, if it is a top level
exception window, throwing the exception in the caller method frame. This scheme only works
if every exception window is fully enclosed by another (or not enclosed at all); sometimes it is
necessary to rewrite exception windows to achieve that. The rewriting technique is discussed
in Section 6.3.

78 BYTECODE CONVERSION

The next exception handling example is thenestedCatch method shown below. It has
similar semantics to thecatchTwo method (it tests first forTestExc1 subtyping and then
for TestExc2 subtyping), but written in a different syntax. The main difference is subtle, the
handler for theTestExc1 exception is also protected by theTestExc2 exception window.

void nestedCatch() {
try {

try {
tryItOut();

} catch (TestExc1 e) {
handleExc(e);

}
} catch (TestExc2 e) {

handleExc(e);
}

}

The translation of methodnestedCatch from Java source code to bytecode is below.
Note that it is clear that one exception window encloses another.

.method nestedCatch()V
.limit stack 2
.limit locals 2

@0: aload0
invokevirtual Example/tryItOut()V

@4: goto @13
@7: astore1

aload 0
aload 1
invokevirtual Example/handleExc(LTestExc;)V

@13: goto @22
@16: astore1

aload 0
aload 1
invokevirtual Example/handleExc(LTestExc;)V

@22: return
.catch TestExc1 from @0 to @4 using @7
.catch TestExc2 from @0 to @13 using @16

.end method

The conversion of methodnestedCatch from bytecode to IR is shown below. In state-
ment 3, thetryItOut method is invoked using acallx opcode with exception catching
label@24. In statement 8, thehandlerExc method is invoked from an exception handler
also using acallx opcode with exception catching label@25. Statements 17 through 25
implements the exception catching code. Statements 17 and 18 catch exceptions for the in-
nermost exception window. Statements 19 and 20 test forTestExc1 subtyping, transfering
control to the handler label@7on success, or delegating exception catching to its enclosing

CONVERSION EXAMPLES 79

exception window in label@26. Statements 21 and 22 catch exception for the outermost ex-
ception window. Statements 23 to 25 test forTestExc2 subtyping, transfering control to the
handler label@16on success, or throwing the exception into the caller method frame.

1. areceive (%4, #Example)
2. apass (ause (%4))
3. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,30,171], @24)
4. jump (@13)
5. label (@7)
6. apass (ause (%9))
7. apass (ause (%4))
8. callx (mlookup (getclass (ause (%4)),[30]),[$Example ,30,173], @25)
9. label (@13)

10. jump (@22)
11. label (@16)
12. apass (ause (%9))
13. apass (ause (%4))
14. call (mlookup (getclass (ause (%4)),[30]),[$Example ,30,176])
15. label (@22)
16. vreturn ()
17. label (@24)
18. acatch (%9)
19. ijump (EQ, subtypeof (getclass (ause (%9)), aclass ($TestExc1)), iconst (

$0), @26)
20. jump (@7)
21. label (@25)
22. acatch (%9)
23. label (@26)
24. ijump (NE, subtypeof (getclass (ause (%9)), aclass ($TestExc2)), iconst (

$0), @16)
25. athrow (ause (%9))

6.2.11 Compiling Finally

This section presents two examples of thetry/finally construct. These examples demonstrate
how subroutines are translated to the IR.

The first example is thetryFinally method shown below. It calls methodtryItOut
protected by a finally block that calls methodwrapItUp .

void tryFinally() throws TestExc {
try {

tryItOut();
} finally {

wrapItUp();
}

}

The translation of methodtryFinally from Java source code to bytecode is shown
below. Thejsr /ret bytecodes are used to implement a shared subroutine that is executed in
both normal and exceptional cases.

80 BYTECODE CONVERSION

.method tryFinally()V
.limit stack 1
.limit locals 3

@0: aload0
invokevirtual Example/tryItOut()V
jsr @16
goto @23

@10: astore1
jsr @16
aload 1
athrow

@16: astore2
aload 0
invokevirtual Example/wrapItUp()V
ret 2

@23: return
.finally from @0 to @10 using @10

.end method

The conversion of methodtryFinally from bytecode to IR is shown below. The ex-
ception catching and handling implementation for finally exception windows is exactly the
same as the implementation of the exception windows presented so far, except that there is no
subtyping test and the handler is always executed (that can be seen in statements 22 to 24).

The conversion of the subroutine requires special attention. There is no construct similar
to subroutines in the IR, however subroutines are implemented using available opcodes. The
jsr bytecode is converted to a call-site identification integer assignment, followed by an
unconditional branch. That can be seen in statements 5 to 6 and 10 to 11. Theret bytecode
is converted to aiswitch opcode that maps each call-site identification integer to the label
after eachjsr , followed by an unreachable infinite loop. Statements 17 to 19 show that.

1. areceive (%4, #Example)
2. adefine (%9, anull ())
3. apass (ause (%4))
4. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,32,182], @25)
5. idefine (%0, iconst ($0))
6. jump (@16)
7. label (@7)
8. jump (@23)
9. label (@10)

10. idefine (%0, iconst ($1))
11. jump (@16)
12. label (@14)
13. athrow (ause (%9))
14. label (@16)
15. apass (ause (%4))
16. call (mlookup (getclass (ause (%4)),[31]),[$Example ,32,184])
17. iswitch (iuse (%0),[$0 , @7][$1 , @14])
18. label (@26)
19. jump (@26)
20. label (@23)

CONVERSION EXAMPLES 81

21. vreturn ()
22. label (@25)
23. acatch (%9)
24. jump (@10)

By doing so, we transfer the semantics of the subroutine from a powerful and complex
control structure to a simple data driven control structure, with the advantage of no code dupli-
cation. However, as a result of the semantic translation from control to data we face a liveness
problem. The reference register%9is now live during thefinally code execution (statements
14 to 16) because it is used by reachable statement 13. But%9may not be initialized at that
time, since it is only initialized through the exceptional path (statement 23). Therefore we
need to generate a reference nullifying statement for each uninitialized live reference regis-
ter at the top of the IR program (statement 2 in this example). This guarantees that all live
reference registers always hold legal values, avoiding problems with garbage collection. The
detailed description of this subroutine conversion procedure is given in Section 6.4.

The second example is the methodtryCatchFinally that mixes the exception han-
dling and finally constructs.

void tryCatchFinally() {
try {

tryItOut();
} catch (TestExc e) {

handleExc(e);
} finally {

wrapItUp();
}

}

The translation of the methodtryCatchFinally from Java source code to bytecode
is the following.

.method tryCatchFinally()V
.limit stack 2
.limit locals 4

@0: aload0
invokevirtual Example/tryItOut()V

@4: jsr @28
goto @35

@10: astore1
aload 0
aload 1
invokevirtual Example/handleExc(LTestExc;)V
jsr @28
goto @35

@22: astore2
jsr @28
aload 2
athrow

@28: astore3

82 BYTECODE CONVERSION

aload 0
invokevirtual Example/wrapItUp()V
ret 3

@35: return
.catch TestExc from @0 to @4 using @10
.finally from @0 to @22 using @22

.end method

The conversion of methodtryCatchFinally is shown below. This is a bit longer
example that consolidates the idea behind explicit exception catching and subroutine imple-
mentation, coupled together. Only features discussed so far are presented.

1. areceive (%4, #Example)
2. adefine (%9, anull ())
3. apass (ause (%4))
4. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,33,190], @37)
5. idefine (%0, iconst ($0))
6. jump (@28)
7. label (@7)
8. jump (@35)
9. label (@10)

10. apass (ause (%9))
11. apass (ause (%4))
12. callx (mlookup (getclass (ause (%4)),[30]),[$Example ,33,192], @38)
13. idefine (%0, iconst ($1))
14. jump (@28)
15. label (@19)
16. jump (@35)
17. label (@22)
18. idefine (%0, iconst ($2))
19. jump (@28)
20. label (@26)
21. athrow (ause (%9))
22. label (@28)
23. apass (ause (%4))
24. call (mlookup (getclass (ause (%4)),[31]),[$Example ,33,194])
25. iswitch (iuse (%0),[$0 , @7][$1 , @19][$2 , @26])
26. label (@36)
27. jump (@36)
28. label (@35)
29. vreturn ()
30. label (@37)
31. acatch (%9)
32. ijump (EQ, subtypeof (getclass (ause (%9)), aclass ($TestExc)), iconst (

$0), @22)
33. jump (@10)
34. label (@38)
35. acatch (%9)
36. jump (@22)

CONVERSION EXAMPLES 83

6.2.12 Synchronization

This last example demonstrates how synchronization primitives are implemented in the IR.
The methodonlyMe receives a reference parameter which is synchronized during the call to
methoddoSomething .

void onlyMe(Foo f) {
synchronized (f) {

doSomething();
}

}

The translation of the methodonlyMe from Java source code to bytecode is shown below.
Themonitorenter andmonitorexit bytecodes are used tolock/unlockthe parameter
object monitor, respectively. Implicitly the Java compiler generates code similar to atry/finally
construct enclosing the synchronized code. It does that to guarantee that the object monitor
will always be exited before the method termination.

.method onlyMe(LFoo;)V
.limit stack 1
.limit locals 4
aload 1
astore2
aload 2
monitorenter

@4: aload0
invokevirtual Example/doSomething()V
aload 2
monitorexit
goto @18

@13: astore3
aload 2
monitorexit
aload 3
athrow

@18: return
.finally from @4 to @13 using @13

.end method

The IR program obtained from the conversion of methodonlyMe is shown below. State-
ments 2 to 8 is code generated to test the parameter objectf for a null value and throwing a
NullPointerException if the case. Statements 10 to 11 implement themonitorenter
operation, it is broken in two opcodes:lock to enter the object monitor, andreadbarrier
to invalidate cached memory reads. Statements 14 to 15 (and 18 to 19) implement themonitorexit
operations, it is broken in two opcodes:unlock to exit the object monitor, andwritebarrier
to writeback cached memory writes. Bothreadbarrier andwritebarrier does noth-
ing but limiting the way that the IR program could be rearranged.

84 BYTECODE CONVERSION

1. areceive (%4, #Example)
2. areceive (%9, #Foo)
3. ajump (NE, ause (%9), anull (), @3)
4. init (aclass ($java/lang/NullPointerException),[$Example ,35,201]

)
5. newinstance (aclass ($java/lang/NullPointerException),[$Example ,

35,201])
6. aresult (%14, #java/lang/NullPointerException)
7. apass (ause (%14))
8. call (mlookup (aclass ($java/lang/NullPointerException),[12]),[$Example ,

35,201])
9. athrow (ause (%14))

10. label (@3)
11. lock (ause (%9),[$Example ,35,201])
12. readbarrier ()
13. apass (ause (%9))
14. callx (mlookup (getclass (ause (%9)),[37]),[$Example ,35,202], @20)
15. writebarrier ()
16. unlock (ause (%9))
17. jump (@18)
18. label (@13)
19. writebarrier ()
20. unlock (ause (%9))
21. athrow (ause (%14))
22. label (@18)
23. vreturn ()
24. label (@20)
25. acatch (%14)
26. jump (@13)

6.3 Exception Windows Conversion

As described in the examples presented on Section 6.2, during the conversion of bytecode
to intermediate representation, exception windows are replaced by explicit control code. Ex-
ceptional operations will have a direct reference to their exception catching entry point in the
current IR program. For nested exception windows, each window will be associated to an
exception catching entry point where subtyping test and handler delegation is implemented.
Non-nested exception windows must be transformed to nested ones.

Exception windows in the bytecode are encoded as aper methodarray. The exception
windows at the beginning of the array are theinnermost. The exception windows at the end of
the array are theoutermost. When an exception is thrown, the JVM must search linearly the
array, from the innermost to the outermost, for the first exception window that encloses the
exception PC. If the exception thrown is catched by that particular window (the subtyping test
does not fail) the control is transfered to its associated handler, otherwise the search continues.
If no window catches the exception, the JVM rethrows it in the caller method frame.

The exception windows conversion procedure we have implemented requires nested ex-
ception windows. Exception windows usually are nested (Figure 6.1 (a)). This is specially true
for bytecode generated from Java sources. Although its occurrence is very rare, non-nested

EXCEPTION WINDOWS CONVERSION 85

exceptions can occur[LY99,§4.9.5] and must be treated correctly.
The algorithm for transforming non-nested exception windows to nested ones is very

simple. For each exception window, from the outermost to the innermost, break it into the
minimum number of equivalent exception windows, so that each one of them is either fully
enclosed by an outermost exception window or not enclosed at all. Figure 6.1 (b) and Fig-
ure 6.1 (c) shows a non-nested exception window and its equivalent nested exception window.

5

3

4

1

2

1

2

3

4

1’’’

1’’

1’

3’

3’’

4

2

(a) (b) (c)

Figure 6.1: Exception windows: (a) Nested; (b) Non-nested; (c) Nested after transformation.

In the worst case, the number of exception windows after applying the algorithm increases
exponentially. However, non-nested exception windows are rare enough to prevent choosing
this implementation. Most important is that it provides correct behavior for all cases, although
in some rare cases it lacks efficiency.

The procedure for converting exception windows is the following:

1. Adjust exception windows to have a nested structure. Each exception window must be
top-level or fully enclosed in another exception window.

2. For each exception window do:

(a) Create an exception catching label and entry point (acatch opcode).

(b) Create a label for catching delegation.

(c) If the exception window is not afinally exception window, generate a test for
exception subtyping delegating control — if the test fails — to its directly en-
closing exception window (using its catching delegation label), or rethrowing the
exception in the caller frame (usingathrow opcode) if it is a top-level exception
window.

(d) Transfer control unconditionally to the exception handler.

3. For each implicit exceptional operation do:

86 BYTECODE CONVERSION

(a) If the operation is not enclosed by an exception window, generate the operation
using its usual opcode.

(b) Otherwise, generate the operation using theexception-proneopcode variant and
set its exception catching label to be the exception catching label of its directly
enclosing exception window.

4. For each explicit exception throwing operation do:

(a) If the operation is not enclosed by an exception window, throw the exception into
the caller frame (usingathrow opcode).

(b) Otherwise, define the appropriate register with the reference to the exception be-
ing thrown and transfer control unconditionally to its directly enclosing exception
window (using its catching delegation label).

Examples of exception windows conversion are shown in Section 6.2.10 and Section 6.2.11.

6.4 Subroutine Conversion

We choose not to include in the IR special opcodes for implementing subroutines (imple-
mented usingjsr andret bytecodes). Typically, subroutines would be implemented using
an intra-proceduralcall/return construct. However, since allsubroutine call-sitesare known
at conversion time, we decided to implement it by indexing call-sites and switching at return
points. This can be implemented without having to extend the IR, and no code is duplicated.

The subroutine conversion procedure is straightforward:

1. Initialize thecall-site indexto zero.

2. For each subroutine call-site (jsr bytecode) do:

(a) Define an integer register with currentcall-site index. The integer register must be
the register bounded to the top of the bytecode operand stack after the subroutine
call.

(b) Unconditional transfer control to the subroutine entry point.

(c) Declare a uniquereturn labeland associate it with the currentcall-site index.

(d) Increment thecall-site index.

3. For each subroutine return point (ret bytecode) do:

(a) Switch on the integer register bounded to the top of the bytecode operand stack
before the subroutine return (usingiswitch opcode). Include in the switch a
case entry for all call-site indices and their associated labels.

(b) For the fall through path, declare a label and an unconditional transfer to it, defin-
ing an unreachable infinite loop.

POST CONVERSION OPTIMIZATIONS 87

4. For each register live at the IR program entry point do:

(a) Displace a default value register defining statement just after allparameter-receiving
opcodes.

In principle, the subroutine conversion procedure could take advantage of precise control
flow information (gathered during the bytecode verification) to suppress useless unreachable
case labels. In our implementation, we choose not to use that control flow information in
order to minimize the interface between the bytecode verification and the bytecode conversion
modules. It is not a big overhead to keep those useless unreachable case labels, because
rarely a method has more than one subroutine. Also, the data flow analysis to detect useless
unreachable case labels can be formulated easily.

The infinite loop generated for the default path of theiswitch opcode is a simple
workaround. An alternate implementation may choose to elect one of the call-site indices
and use it as the default path.

This implementation of subroutines is efficient, even though it requires an integer switch
during the subroutine return. Since switch case labels are actually call-site indices — which
were generated sequentially — the switch can have a table-based translation.

The last step of the subroutine conversion procedure is a repair in the IR program to guar-
antee that all registers are initialized before their use. Although the use of initialized vari-
ables is a property of verified bytecode, the control structure simplification, that occurs during
the subroutine conversion, inserts previously non-existing paths in the control flow graph,
in which variables could be used without being initialized. We decided to keep this bytecode
property also in IR programs. This is specially important when we discuss our implementation
of garbage collectionin Chapter 9. The accurate GC algorithm requires some live reference
tables to run. Although uninitialized reference registers are not used in the IR program, it can
possibly be included in a reference table for a portion of the IR program where it is consid-
ered live and is not initialized. This happens because the liveness analysis is a conservative
approximation, and unfortunately semantic control information to detect this situation is not
available anymore after conversion. In the best case, an uninitialized reference included in a
live reference table makes the GC algorithm crash.

Subroutines makes GC hard, it is no news. This approach is simple and elegant. The
price we pay is the cost of executing the initializing statements on method entry (for Java
programs they are at most one per subroutine), and the increase of IR registers lifetime which
may impactregister allocation.

Examples of subroutine conversion are shown in Section 6.2.11 and Section 6.2.12.

6.5 Post Conversion Optimizations

This section describes optimizations that must be applied to IR programs after conversion. In
principle, the conversion algorithm could produce IR programs that would not require those
optimizations. However, we decided to simplify the conversion algorithm, for the sake of
correctness, and apply these optimizations only afterwards.

88 BYTECODE CONVERSION

6.5.1 Building Expression Trees

During conversion, bytecode local variables and operand stack values are bounded to IR reg-
isters. However, most operand stack values are intermediate values of complex expressions
being computed. Therefore, representing them asexpressions trees, rather than as a sequence
of three operand statements, is a better choice. The greater the expression tree, the more ef-
fective is its translation to machine code. There are optimalinstruction selectionandregister
allocationalgorithms for expression trees[AJ76].

The transformation of three operand statements to a expression tree is simple. We look for
register definitions that are used only once in the IR program; that use must be inside the same
basic blockwhere the definition is. Then we replace the use of the associated register by its
defining expression.

Care should be taken when the defining expression contains a memory read or register use
operation. If the memory read isvolatile, or there is amemory read barrier(readbarrier
opcode) after thedefining statementand before theuse statement, the optimization must not
occur. Also, it must not occur if, between those statements, there is a memory write operation
possibly aliased to the same memory location as the memory read present in the defining
expression (a similar restriction applies to registers).

The following IR program was obtained from the conversion of methodalign2grain
before applying the expression tree optimization. The optimized IR program is shown in
Section 6.2.2.

1. areceive (%4, #Example)
2. ireceive (%0)
3. ireceive (%5)
4. idefine (%10, iuse (%0))
5. idefine (%15, iuse (%5))
6. idefine (%10, iadd (iuse (%10), iuse (%15)))
7. idefine (%15, iconst ($1))
8. idefine (%10, isub (iuse (%10), iuse (%15)))
9. idefine (%15, iuse (%5))

10. idefine (%20, iconst ($1))
11. idefine (%15, isub (iuse (%15), iuse (%20)))
12. idefine (%20, iconst ($-1))
13. idefine (%15, ixor (iuse (%15), iuse (%20)))
14. idefine (%10, iand (iuse (%10), iuse (%15)))
15. ireturn (iuse (%10))

6.5.2 Eliminating Null Checks

Null check eliminationis an important optimization for converted IR programs. Thenull check
is the most common runtime check present in bytecodes. Performing a null check for each
operation that semantically requires it is expensive and usually redundant. By performing data
flow analysis, we can discover that many checks can be safely suppressed and substituted by
an equivalent check performed previously in the execution. Specifically, thethis implicit
parameter is never null, and its storage is never redefined in the bytecode generated from Java
sources.

POST CONVERSION OPTIMIZATIONS 89

This optimization consists in removing IR statements of the form

ajump (EQ, ause (%4), anull (), @5)

where%4is never null, or replacing by an unconditional control transfer (jump opcode) if%4
is always null. The similar idea can be applied to statements of the form

ajump (NE, ause (%4), anull (), @5)

they can be removed if%4is always null, or replaced by an unconditional control transfer if
%4is never null.

The data flow analysis that provides information required by null check elimination is a
forward analysis based on reference registers. The analysis works with three sets of reference
registers:null registers(NL), non-null register(NN) andunknown registers(UK). As usual,
the implementation of these sets is done using bit vectors, each reference register is associated
to two bit positions (c1c2). The first bit position indicates if the register is null (0) or non-null
(1). The second bit position supercedes the value of the first bit position if the register contents
cannot be known (1). Table 6.2 is thetruth tablefor theconfluence operatort.

t NL (00) NN (10) UK (X1)
NL (00) NL (00) UK (X1) UK (X1)
NN (10) UK (X1) NN (10) UK (X1)
UK (X1) UK (X1) UK (X1) UK (X1)

Table 6.2: Truth table for the confluence operatort.

The logical equations obtained from the above truth table are show below. Both can be
implemented efficiently for bit vectors.

C = A tB ⇒
{
c1 = a1 + b1

c2 = a2 + b2 + (a1 ⊗ b1)

In order to efficiently implement the data flow analysis, we associate to each basic block
a flow function. The flow function consists of a data flow item (NL, NN, UK) that each each
reference register assumes at the basic block exit point, or a source register index from where
the item must be copied at the basic block entry point. To compute the flow function we use
the following procedure:

1. Initialize the flow function, each register is associated with its index.

2. For each statement basic block statement in forward direction do:

(a) If the current statement is a reference copy statement, replace the item or index of
the defined register in the flow function by the current value or index of the used
register in the flow function.

90 BYTECODE CONVERSION

(b) If the current statement defines a reference register and is not a copy statement,
replace the item or index of the defined register by the value associated to the
defining expression (see Table 6.3).

(c) Otherwise, do nothing.

Table 6.3 defines the flow value associated to each opcode that provides a reference as
result.

OPCODE FLOW ITEM

getclass NN
aload UK

aaload UK
mlookup NN

imlookup UK
anull NL

aclass NN
astring NN

Table 6.3: Flow item for each opcode that provides reference result.

The data flow is computed iteratively. Starting at the entry basic block the flow functions
are applied until convergence. During computation, edges leaving basic blocks that end with
a null check are treated specially; the flow item of the reference register being checked must
be modified to reflect the test result on each path. Once the data flow analysis is over, the flow
items at exit point of basic blocks are used to determine if the transformation may apply.

6.5.3 Factoring Exception Throwing Code

The IR program is generated by the conversion algorithm with a small section of code, for
throwing internal exceptions, after each check for a violated property (e.g. null pointer access,
division by zero). However, the conversion algorithm is naive enough to miss the fact that the
same code may be replicated many times inside the same IR program.

The extra code generated to instantiate and throw an internal exception can usually be
shared by many checks of the same property that occurs in the same line of code. This can be
seen in the example below.

Object getNextNext() {
return next.next;

}

Assuming that no null checks were eliminated yet, two null pointer checks are present
in the IR program generated from thegetNextNext method. The first check is done for
the this parameter when reading fieldnext . The second check is done when reading field
next from the possibly null reference just read from fieldnext of this object. The IR
program obtained from the conversion of methodgetNextNext is shown below.

POST CONVERSION OPTIMIZATIONS 91

1. areceive (%4, #Example)
2. adefine (%9, ause (%4))
3. ajump (NE, ause (%9), anull (), @6)
4. init (aclass ($java/lang/NullPointerException),[$Example ,1,6])
5. newinstance (aclass ($java/lang/NullPointerException),[$Example ,

1,6])
6. aresult (%19, #java/lang/NullPointerException)
7. apass (ause (%19))
8. call (mlookup (aclass ($java/lang/NullPointerException),[12]),[$Example ,

1,6])
9. athrow (ause (%19))

10. label (@6)
11. adefine (%9, aload (ause (%9),dynamic(0,0),false, #Example))
12. ajump (NE, ause (%9), anull (), @21)
13. init (aclass ($java/lang/NullPointerException),[$Example ,1,6])
14. newinstance (aclass ($java/lang/NullPointerException),[$Example ,

1,6])
15. aresult (%19, #java/lang/NullPointerException)
16. apass (ause (%19))
17. call (mlookup (aclass ($java/lang/NullPointerException),[12]),[$Example ,

1,6])
18. athrow (ause (%19))
19. label (@21)
20. adefine (%9, aload (ause (%9),dynamic(0,0),false, #Example))
21. areturn (ause (%9))

It is easy to see that the code instantiating and throwing theNullPointerException
for both checks is the same (statements 4 to 9 and 13 to 18). The IR program can thus be
rewritten to share that code.

1. areceive (%4, #Example)
2. adefine (%9, ause (%4))
3. ajump (NE, ause (%9), anull (), @6)
4. label (@21)
5. init (aclass ($java/lang/NullPointerException),[$Example ,1,6])
6. newinstance (aclass ($java/lang/NullPointerException),[$Example ,

1,6])
7. aresult (%19, #java/lang/NullPointerException)
8. apass (ause (%19))
9. call (mlookup (aclass ($java/lang/NullPointerException),[12]),[$Example ,

1,6])
10. athrow (ause (%19))
11. label (@6)
12. adefine (%9, aload (ause (%9),dynamic(0,0),false, #Example))
13. ajump (EQ, ause (%9), anull (), @21)
14. adefine (%9, aload (ause (%9),dynamic(0,0),false, #Example))
15. areturn (ause (%9))

The idea we have used to implement thisfactoring exception throwing codeoptimization
is the same used inLanguage Theoryto minimize states in aDeterministic Finite Automaton
(DFA) [Ner58, Hop71]. We divide the IR statements in sets, each set containing initially

92 BYTECODE CONVERSION

statements that are equal in syntax, including their attributes. Then we start partitioning each
set that contains statements leading execution to statements in different sets. When no more
sets can be created, the sets with more than one statement indicates the statements that are
replicated and can be removed from the IR program. Actually the replicated code is not
removed but the control structure of the IR program is modified to shared a single copy of
replicated code. The other copies are eliminated byunreachable code eliminationdescribed
on Section 6.5.4.

This algorithm is generic and do the factoring for any replicated code, including the ex-
ception throwing code as well as user code.

6.5.4 Control Optimizations

The control optimizations to be applied to IR programs after conversion are basically two:
unreachable code eliminationandjump optimization.

Unreachable code elimination is a trivial optimization, it eliminates from thecontrol flow
graphof the IR program basic blocks not reachable by any path. Code may become unreach-
able after applying the optimizations described in Section 6.5.2 and Section 6.5.3.

The jump optimization changes the linear placement of the control flow graph of a IR
program — sometimes merging basic blocks — in order to remove useless unconditional
control transfers. To merge two basic blocks one of them must be the onlypredecessorof the
other, which must also be its onlysuccessor. The following IR program was obtained from
applying the jump optimization to the methodtryFinally shown in Section 6.2.11.

1. areceive (%4, #Example)
2. adefine (%9, anull ())
3. apass (ause (%4))
4. callx (mlookup (getclass (ause (%4)),[29]),[$Example ,32,182], @25)
5. idefine (%0, iconst ($0))
6. label (@16)
7. apass (ause (%4))
8. call (mlookup (getclass (ause (%4)),[31]),[$Example ,32,184])
9. iswitch (iuse (%0),[$0 , @7][$1 , @14])

10. label (@26)
11. jump (@26)
12. label (@7)
13. vreturn ()
14. label (@14)
15. athrow (ause (%9))
16. label (@25)
17. acatch (%9)
18. idefine (%0, iconst ($1))
19. jump (@16)

6.6 Discussion about Assynchronous Exceptions

An important issue to be discussed in the shade of the bytecode conversion is theassyn-
chronous exceptionsupport. An assynchronous exception is an exception thrown by one Java

DISCUSSION ABOUT ASSYNCHRONOUS EXCEPTIONS 93

thread in the context of another Java thread.
Although user level assynchronous exception throwing has beendeprecated3 from the

Java platform (stop method), it is also required in some implementations of the runtime to
implement safely part of its internal operations (e.g. destroying the JVM).

Assynchronous exceptions are precise and may be detected after a small but bounded
amount of time [LY99,§2.16.2]. The assynchronous exception detection by the JVM must be
designed and implemented with care — not to sacrifice performance — since its occurrence
is rare.

The intermediate representation does not have explicit opcodes for checking assynchronous
exceptions. However, it was designed to check for assynchronous exceptions, at its conve-
nience, by some selected opcodes. Those opcodes are actually the opcodes that are expensive
and usually require runtime callbacks. They must also have support for stack trace information
and have a variant form that defines exception catching labels. Those opcodes comprise the
opcodes for calling native methods, allocating memory, initializing classes and synchronizing.
We believe most multithreaded programs will inevitably use one of these operations from time
to time.

With this scheme, it is true that some Java code may never check for assynchronous ex-
ceptions. If the code does not do any of the special operations listed above, this will happen.
For instance the followingloopForever method will never check for assynchronous ex-
ceptions in our implementation.

void loopForever() {
for (;;)

;
}

However, code like this does not follow the Java multithreading guidelines. Since thread
scheduling is not strictly defined in the Java platform, theloopForever method may stuck;
not even given the chance to another thread execute and post an assynchronous exception.
Portable well-written multithread Java programs will sometimes yield on tied loops (by call-
ing native methodyield), giving the runtime the possibility for throwing any pending as-
synchronous exceptions. TheloopForever method could be rewritten this way.

void loopForever() {
for (;;)

Thread.yield();
}

3Deprecation means it should not be used by new software, but must be still available for backward compati-
bility.

Chapter 7

The x86 Back-End

This chapter describes the back-end for theIntel Architecture 32-bitfamily of processors. The
x86 back-endis a simple and naive platform-independent code generator implementation. As
a first implementation, reliability and simplicity where the main goals.

We describe the code generation strategy; the data structures required by the runtime to
implement garbage collection, stack tracing and exception handling; the relocation and patch
tables used to update the method text once in the client-side; and improvements that should
appear in an enhanced version of this x86 back-end.

The reader is assumed to be familiar with the popular Intel 32-bit architecture features and
instruction set [Int97a, Int97b]. Code samples are displayed using AT&T assembly syntax.

7.1 Code Generation

The x86 back-end uses a simple and naive code generation strategy. In a first moment, the
back-end does the binding of IR registers on the stack frame by doing liveness analysis and
building an interference graph. Afterwards, in a second moment, it does instruction selection
by pattern matching using the tool described in Appendix B. Register allocation is done
only for expression trees, using a well-known technique applied during instruction selection
[AJ76]. The x86 back-end lacks local or global register allocation, instruction scheduling and
peephole optimizations. A discussion about its improvement is left to Section 7.4.

7.1.1 Stack Frame and Registers Usage Protocol

The code generated by the x86 back-end obeys the following protocol:

• All parameters are passed in the stack.

• All general purpose registers are caller-saved.

• Return values are kept in registers (see Table 7.1).

• Callees pop parameters on return.

95

96 THE X86 BACK-END

TYPE REGISTER

integer %eax
long integer %eax (low word)%edx (high word)
float %st(0)
double %st(0)
reference %eax

Table 7.1: Registers used to store return values.

The stack frame organization is depicted in Figure 7.1. During calls, callers push pa-
rameters and the return address. Callees create a new frame by saving caller frame pointer
and making room for local variables. Local variables are actually IR registers, the termlocal
variable is used to avoid confusion with processor physical registers (e.g.%eax). Local vari-
ables are bounded to the new frame but parameters storage is reused whenever possible (see
Section 7.1.2 for details). The general prologue for methods is the following:

SELF:
... ;object fields

ENTRY:
pushl %ebp ;save caller frame pointer
movl %esp,%ebp ;set frame pointer
pushl $SELF ;push text reference
subl $8,%esp ;make room for 2 local variables
...

The text referenceis a reference to the method implementation itself. Since method texts
are first-class objects, which may become eligible for garbage collection, this reference pre-
vents the method from becoming unreachable during its execution (see Chapter 9 for details
about garbage collection). For the same reason, the area between theSELF label and the
ENTRYlabel is reserved for instance fields.

During method return, the caller stack frame must be restored and the control transfered
back to the instruction immediately following the call instruction. Also the callee is responsi-
ble for popping parameters from the stack. The general epilogue for methods is the following:

...
EXIT:

leave ;restore previous frame
ret $4 ;return and pop 1 parameter

7.1.2 Local Variable Binding

The first step in code generation islocal variable binding. Local variable binding consists
of associating stack frame indices — and thus reserving storage — to each local variable (IR
register).

CODE GENERATION 97

stack
growth
direction

%esp

%ebp

Parameters
(Local

Variables)

Return Address

Caller Frame

Text Reference

Variables
Local

Figure 7.1: Stack frame organization.

In order to efficiently allocate storage to each local variable, we need to compute a data
flow analysis calledliveness analysis. Liveness analysis provides information about the live-
ness of each local variable for every point of the IR program. A local variable islive at a
particular point if there is at least one definition of that local variable that reaches an use of
the same variable passing through that point1.

The characteristics of the liveness data flow analysis are:

• It is abackwardanalysis.

• In a path merge, the set of live variables is obtained by theunion of the set of live
variables on each path.

• A local variable use inserts that local variable into the set of live variables.

• A local variable definition removes that variable from the set of live variables.

Using liveness information we can compute theinterference graph, a graph where nodes
represent local variables and edges represents liveness interferences. Aliveness interference
encodes a pair of local variables that are both live at least in one point in the IR program.
Using the interference graph we can discover the storage required by a particular IR program.
The number of words required to do the local variable binding is at most one plus the degree
of the node with greatest degree.

1A local variable use without a definition also makes that local variable live, but that should never occur in
IR programs.

98 THE X86 BACK-END

After building the interference graph, we assign to each node a stack frame index. For
local variables defined by a parameter-receiving IR statement, e.g.ireceive , the frame
index is positive and obtained from the parameter order. For other local variables, the stack
frame index is usually negative and its assignment is done greedily — until all indices are
assigned do: select a node not yet assigned, and assign an index different from the already
assigned adjacent nodes indices.

Care must be taken when handling two word local variables (i.e. long integers and dou-
bles). In our interference graph implementation, they are split into two separate nodes. Since
two word local variables must be allocated contiguously, during stack frame index assignment
we have to consider that the high word index must be subsequent to the low word index.

By doing local variable binding using an interference graph we obtain a very good alloca-
tion, which does not waste storage. Therefore, ordinary local variables are sometimes bound
to the same storage as parameter local variables, because their liveness does not interfere (and
thus it has positive index).

7.1.3 Instruction Selection

Instruction selection is done by tree pattern matching using the tree rewriting tool described
in Appendix B. During instruction selection, we do register allocation for expression trees,
based on a well-known technique [AJ76].

The tree pattern matcher is generated by the tree rewriting tool based on a grammar speci-
fication. The grammar specification contains the set of tree patterns and associated actions to
generate code. Each tree pattern, plays one of two roles:

1. Matches a tree pattern that is a straight map of one instruction format available on the un-
derlying instruction set. Tries to capture all addressing modes and minimize size/cycles.

2. Matches a tree pattern that cannot be mapped to a single instruction format. Usually a
small pattern covering a special IR opcode. Generates a code segment with fixed ad-
dressing and instructions. In general, the number of pattern variants to cover all possible
instruction formats and order combinations is impracticable.

Figure 7.2 shows sample tree pattern rules extracted from the x86 back-end grammar spec-
ification (see Appendix B for a full reference about the specification syntax). These are rules
for matching the signed integer division (idiv opcode). The signed division in the x86 archi-
tecture requires the dividend to be in the%eax register, being the divisor in any other general
purpose register. Before executing the division instruction, the issue of acltd instruction is
mandatory in order to sign extend%eax to the 64-bit paireax:edx . Once the division takes
place (idivl), the result is kept in%eax register while the associated remainder is written
to the%edx register.

Both rules shown in Figure 7.2 matches the signed integer divisionidivl instruction.
The difference between the two rules is in the scheduling of the code generated from subex-
pressions, which tries to accommodate the register pressure of the whole expression. This
is exactly the implementation technique for expression tree register allocation described in

CODE GENERATION 99

[AJ76] adapted to aCISCmachine. The general idea — employed for orthogonal registers
sets architectures — is that the minimum number of registers required by an expression tree
r will be themax(r1, r2), if r1 6= r2, or r1 + 1, if r1 = r2, wherer1 andr2 are the minimum
number of registers required by each subexpression respectively. For the x86 architecture, we
have implemented this technique using awritten registers setfor each expression instead of
usingr. This was done because of the x86 instruction set operand restrictions in which reg-
isters are not homogeneous (as past mentioned for theidivl instruction). Fortunately, the
implementation of written registers sets could be done efficiently using 32-bit integers; and
this was possible exactly because the x86 architecture register set is small.

private void eax()
<int cost, int reg, int kill> [@@.cost < cost]

...
| IR.IDIV(eax,r32) [@3.reg != as.EDX && (@3.kill & @2.reg) == 0]
{ @@.cost = cost(6,3)+@2.cost+@3.cost;

@@.reg = as.EAX;
@@.kill = as.EAX|as.EDX|@2.kill|@3.kill; }

= { @2();
@3();
as.cltd();
as.idivl(@3.reg); }

| IR.IDIV(eax,r32) [@3.reg != as.EDX && (@2.kill & @3.reg) == 0]
{ @@.cost = cost(6,3)+@2.cost+@3.cost;

@@.reg = as.EAX;
@@.kill = as.EAX|as.EDX|@2.kill|@3.kill; }

= { @3();
@2();
as.cltd();
as.idivl(@3.reg); }

...
;

Figure 7.2: Sample tree pattern rules extracted from the x86 specification.

Let’s look a little closer at this grammar specification excerpt in Figure 7.2. Rules have
the non-terminaleax on their left hand size because the result of theidivl instruction is
always kept in%eax. The non-terminaleax synthetizes three attributes: a mixed time/space
cost, the register that stores the result of the expression, and the set of registerskilled during
the computation of this expression. Thecost attribute is used to choose the best tree match-
ing. The tree pattern rules are similar, changing only the subexpressions scheduling. The tree
patterns are simple, they match anidiv opcode requiring that the dividend must be%eax
(eax non-terminal) and the divisor any general purpose register (r32 non-terminal). It is im-
portant that the divisor must not be register%edx because the dividend will be sign-extended
to the 64-bit register pair%eax:%edx (it can be seen that this is captured semantically rather
than syntatically). Also, each match must only occur if the subexpression that is scheduled
last does not overwrite the register storing the result of the subexpression scheduled first. The

100 THE X86 BACK-END

attributes synthetization for both rules is very simple: the cost is the sum of the costs of each
subexpression plus a 6 cycles and 3 bytes of thecltd /idivl instructions; the result register
is %eax; the written registers set is the union of the written registers set of each subexpres-
sions, including registers%eax and%edx for the current expression. The code generation
for these tree pattern rules is also simple, first the code for each subexpression is generated
according to the expected scheduling (methods@2() and@3()), then the instructions related
to the division are generated.

The following assembly code was generated by the x86 back-end for the expressionidiv (
iuse (%0), iadd (iuse (%5), iuse (%0))) .

movl [%ebp+8],%eax ;left subexpression, write %eax

movl [%ebp-8],%ebx ;right subexpression, write %ebx
addl [%ebp+8],%ebx ;must not kill %eax

cltd ;division, write %eax,%edx
idivl %ebx ;result kept in %eax

The rest of the x86 back-end grammar specification is vast and repetitive. Besides, the
ideas used to implement each rule are exactly the same as described in the example above.

7.2 Cooperative Runtime Support

This section describes extra information provided by the x86 back-end as a requirement of the
language runtime in order to carry out some of its tasks, namely: live references identification
in the stack frame, stack traces printing, control transference to appropriate exception handler,
and identification of references hard-coded in method text objects.

7.2.1 Live Frame References and Stack Tracing Tables

At certain times, the runtime has to inspect the thread call stack in order to gather information
about it. This is only possible when the executing method does aruntime callback, then the
runtime is able to look at the underlying stack. Also, information about each method in the
stack frame must be made available by the code generator to be used by the runtime during
callbacks. The runtime inspects the stack for two reasons: to discover the set of live root
references in the thread stack, and to print a stack trace.

We have classified some IR opcodes asinspection-point, they mark points in the IR pro-
gram where the stack frame may be inspected. The code generator identifies inspection-point
opcodes and provides comprehensive information about the IR program during their execu-
tion. There are two types of inspection-point IR opcodes:

Call Opcodes Opcodes that cause another Java method invocation. Provides information for
all frames in the call stack but the topmost. Namely:call andcallx .

COOPERATIVE RUNTIME SUPPORT 101

Runtime Callback Opcodes Opcodes that cause a runtime callback. Provides information
for the topmost frame. Namely:init , initx , lock , lockx , ncall , ncallx ,
newarray , newarrayx , newinstance , newinstancex .

The information required by the runtime is generated using a return address indexed table.
After each call instruction that is generated to implement an inspection-point IR opcode, the
code generator provides a return address label. The return address indexed table is built asso-
ciating an entry to each return address label, and its pointer is made available via the method
text header. When necessary, the runtime steps through the stack collecting the desired infor-
mation by looking for the return address of each call in the indexed table associated to each
stack frame (see Chapter 8 for object headers/heap structures layout, and details about stack
traversal). Each indexed table entry is a pair of pointers to two other tables: thelive frame
referencestable, and thestack tracingtable. The table is sorted by return address to speedup
the search. This can be seen in the following code sample.

...
pushl %eax ;pass parameter
call init ;initialize class, runtime callback

IPOINT 0:
addl $4,%esp ;C protocol, caller pop parameters
...
pushl %eax
call newinstance ;instantiate class, runtime callback

IPOINT 1:
addl $4,%esp ;C protocol, caller pop parameters
movl %eax,12(%ebp) ;save return value
...
pushl -20(%ebp) ;pass parameter
call *CALLEE CLASS+96 ;call method through table

IPOINT 2:
movl %eax,-16(%ebp) ;save return value
...

INSPECTOR:
.long IPOINT 0 ;the class initialization info
.long TRACE 0 ;stack tracing table
.long 0 ;no live references

.long IPOINT 1 ;the class instantiation info

.long TRACE 0 ;stack tracing table, same so is shared

.long 0 ;no live references

.long IPOINT 2 ;the static method table call info

.long TRACE 1 ;stack tracing table

.long LIVES 0 ;live frame references table

...

The live frame references table is a zero-terminated array of signed 8-bit frame indices. It
is used by the runtime to determine the set of live root references for the current stack frame.

102 THE X86 BACK-END

It is built using data flow information gathered by liveness analysis during local variable bind-
ing (see Section 7.1.2). The set of indices that make up a live frame references table is the
set of frame indices assigned to the IR registers live at the point immediately following the
inspection-point IR opcode associated to current return address. The encoding of the 8-bit
frame indices addresses words instead of bytes, also the return address and text reference in-
dices are skipped to expand the indexing capacity (see Figure 7.1 for stack frame layout).
Therefore, an 8-bit index with value 4 addresses the reference at(4+1)*4(%ebp) ; an 8-
bit index with value -2 addresses the reference at(-2-1)*4(%ebp) . The encoding of the
live frame references table using signed 8-bit indices may sound very limited but it is not.
It provides support for identifying up to 128 parameters and 255 local variables (including
parameters storage being reused by local variables). This is rather enough though java meth-
ods may have up to 255 parameters and, in some pathological cases, as many simultaneous
live references in a single inspection-point as required to exceed the supported limit. The
encoding, however, has sufficed our first implementation needs, and can be easily reviewed.
The following code sample is the live frame references table for the method translation shown
previously.

...
LIVES 0:

.byte -4 ;reference at -20(%ebp) is live

.byte 2 ;reference at 12(%ebp) is live

.byte 3 ;reference at 16(%ebp) is live

.byte 0 ;marks the end of table

...

The stack tracing table is an array of three field records. Each record contains information
about a source code point that must appear in the stack trace for the current return address.
The first field of the record is a reference to the class that declares the method that must appear
in the stack trace. The second field is the index of that method as it appears in the declaring
class file. The third field is the source code line number that must appear in the stack trace. If
the line number is not available the second field must have flag value 65535 and the third index
must be the index of the method (methods are indexed from 0 to 65534 while line numbers,
when available, are indexed from 0 to 65535, so this special encoding was chosen). Each stack
tracing table end is marked with a null reference. The following code sample shows the stack
tracing tables for the method translation shown above (note that the stack trace information
for the first two inspection points was the same, so a single stack tracing table is shared by
both).

...
TRACE0:

.long THIS CLASS ;class reference

.short 18 ;method index

.short 77 ;line number

.long 0

TRACE1:

COOPERATIVE RUNTIME SUPPORT 103

.long THIS CLASS ;same class reference

.short 18 ;same method index

.short 79 ;two lines below

.long 0

...

For IR programs translated right after the conversion from bytecode, each stack tracing
table has at most one three field record. However, multiple records are supported in order to
correctly implement stack traces wheninlining optimizationsoccur before the translation by
the back-end takes place. Inlining optimizations replacein loco method calls by the contents
of the callee methods. Then method calls are eliminated and related stack trace information
would be lost. In order to keep stack trace integrity, the stack trace information of the elimi-
nated method call is added to the stack trace information of each inspection point in the code
being inlined. The following code sample shows the stack tracing table resulted from the
inlining of a method call.

...
TRACE1:

.long CALLEE CLASS ;class that owns the callee method

.short 34 ;callee method index

.short 203 ;line number

.long THIS CLASS ;previous stack trace information

.short 18 ;that would have been lost after applying

.short 79 ;the inlining optimization

.long 0

...

As in the case of the live frame reference table encoding, the stack tracing table encoding
was chosen for simplicity. Better alternatives are certainly available.

7.2.2 Exception Catching Routine

IR programs that have exception catching entry points (acatch opcode) are translated to
method texts that must provide anexception catching routine. An exception catching routine
is a small code segment that, based on the return address of a call, catches and delegates an
exception to its appropriate handler. The exception catching routine of a caller method is used
by the runtime to search for a handler whenever an exception is thrown through the frame of
the callee method.

When a method cannot handle an exception, it rethrows the exception which may be
catched by any caller method in the call chain. This rethrown action is done by calling a
runtime routine calledathrow . The athrow routine receives as parameter the excep-
tion instance being thrown. Then theathrow routine steps through the stack looking for
a method who catches the exception (see Section 8.3.2 for details about stack traversal). For

104 THE X86 BACK-END

each frame visited, it uses thetext referenceto reach the associated method text instance
and check if it implements an exception catching routine (a possibly null pointer field in the
method text header). If the method text does not implement an exception catching routine
then the step through the stack continues. Otherwise, the exception catching routine is in-
voked. The parameters to the exception catching routine are: the exception being thrown,
the return address for the method associated to the current stack frame, and the current stack
frame base pointer. A sketch code for theathrow routine is shown above.

athrow :
popl %ecx ;discard return address,

; athrow never returns
popl %eax ;save exception instance in %eax

NEXT:
movl 4(%ebp),%edx ;save return address in %edx
movl (%ebp),%ebp ;goto caller frame
movl -4(%ebp),%ebx ;save text reference in %ebx

testl %ebx,%ebx ;if text reference is null
je C FRAME ;its not a java frame

movl -8(%ebx),%ecx ;save method text header pointer in %ecx
movl -12(%ecx),%ebx ;save exception catching routine in %ebx

testl %ebx,%ebx ;if no exception catching available
je NEXT ;proceed to caller frame

pushl %ebp ;pass frame pointer as parameter
pushl %edx ;pass return address as parameter
pushl %eax ;pass exception instance as parameter

call *%ebx ;jump to exception catching routine
;it never returns...

C FRAME:
... ;C frame, return to JNI

In order to implement the exception catching routine, the x86 back-end must keep track of
all possible return addresses ofexception-proneopcodes (e.g.callx , newinstancex , etc)
for a particular IR program. During code generation an extra sequential label is placed after
each call instruction associated to an exception-prone opcode. That can be seen in the code
excerpt above for a direct method call.

...
pushl -12(%ebp) ;push second parameter
pushl -8(%ebp) ;push first parameter
call CALLEE ENTRY ;direct method call

XRETADDR2: ;return address label
movl %eax,8(%ebp) ;save return value in local

COOPERATIVE RUNTIME SUPPORT 105

...
HANDLER2: ;handler enclosing the call

movl %eax,-8(%ebp) ;store exception instance in local
... ;handle exception

The code for the exception catching routine is generated by the back-end just after the
actual method translation. The exception catching routine restores the current method stack
frame and searches the exception-prone return labels using the return address. If any label
matches the return address, then control is transfered to its handler entry point label. Oth-
erwise, the exception was thrown in a point not enclosed by a exception handler, and is not
handled by current method; it is then rethrown in caller frame by calling theathrow rou-
tine. A sample exception catching routine is shown above, note that the return method search
is done sequentially for the sake of clarity, actual implementation uses a lookup table method.

CATCHER:
popl %ecx ;discard return address, never returns
popl %eax ;save exception instance in %eax
popl %edx ;save return address in %edx
popl %ebp ;restore current stack frame

leal -12(%ebp),%esp ;restore top of the stack

cmpl $XRETADDR0,%edx ;search for return address
je HANDLER 0 ;and transfer control to handler
cmpl $XRETADDR1,%edx ;exception instance is kept in %eax
je HANDLER 1
cmpl $XRETADDR2,%edx
je HANDLER 2
...
pushl %eax ;exception not catched
call athrow ;rethrow in caller frame

7.2.3 Method Text Reference Table

Each heap allocated class instance must provide information about the layout of references in
its field area. The instance class is usually the common placeholder for that kind of informa-
tion. During garbage collection, each class instance is visited, and using its class reference2,
it is possible to locate the references inside the field area, which are scheduled to be visited in
the future according to the garbage collection scheme.

Since in our implementation method texts are first-class objects (instances of final class
MethodText), there must be a way to locate references directly referenced in its body. The
types of references directly referenced by a method text are:

• Method texts, used in direct calls.

2Some implementations do not store the class reference in each instance, but a class record pointer.

106 THE X86 BACK-END

• String literals,internalizedinstances of classString .

• Meta class objects, instances of classClass .

In order to obtain that information, each method text instance has in its header a pointer to
a table of references, themethod text reference table. That table is simply a immutable null-
terminated array of references. Some other possibilities for encoding such table are possible
but we choose this encoding for simplicity rather than storage efficiency. For instance, storing
a 16-bit offset in the method text, indicating a reference encoded as instruction immediate
data, would save half the memory; however it would limit method text length to be near 64K,
and method text reference offsets should be flagged since, as immediate data, they are stored
as PC relative addresses (even after we have obtained the absolute address from the relative
address, this absolute address still is not the method text reference (SELF), but a pointer to
its entry pointENTRY; a constant value must be subtracted from it). Simplicity was then an
adequate choice specially because, in practice, this table is rather small and duplicate entries
can be easily eliminated.

In addition, each method text instance has in its header a reference to its declaring class.
This reference is required to prevent the class from being garbage collected while the method
text is still executing (reachable by a text reference in any stack frame). Object headers and
heap structures layout are described in Section 8.1.

7.3 Relocation and Patch Tables

This section provides details about relocation and patches that must be done by the runtime
whenever a new method text is instantiated. Relocation consists of updating memory locations
inside the method text by adding its base offset to them. Patches are updates to memory
locations inside the method text in order to reflect the actual reference of another object. The
relocation and patch tables are part of each method text information sent to the client-side
during the TRANSLATE phase using the x86 back-end.

7.3.1 Relocation Table

The relocation tablespecifies method text offsets that contain absolute addresses to memory
locations relative to its base address. The table is required because the run-time address of
a method text is not known prior to its instantiation, and relative addressing is not available.
Usually, relative addressing is not available when a label has to be placed in a table or used
as immediate data of a non control transfer instruction. For instance, all the contents of the
return address indexing table described in Section 7.2.1 need to be relocated; the address of
each word must be included in the relocation table.

Prior to relocation, relocatable addresses contents are the zero-based offset of each label
inside the method text. Relocating an address means adding the base address of the method
text to this offset, resulting in its absolute address.

Figure 7.3 shows how relocation is implemented. During code generation, each abso-
lute address to a label inside the method text is initialized with its offset from the base offset

RELOCATION AND PATCH TABLES 107

absolute
addressing

absolute
addressing

00000000H:

00000200H:

00000100H:

Method Text

00000100H

Relocation Table

00000200H

base
offset 01083000H:

01083200H:

01083100H:

Run-Time Image

01083100H

base
address

Figure 7.3: Relocation of absolute addresses.

(00000100H); also the offset of the absolute address is recorded for relocation (00000200H).
At run-time, each entry in the relocation table is visited and the method text base address is
added to the absolute address at the associated offset.

01083000H + 00000100H = 01083100H

7.3.2 Runtime Callback Patch Table

The runtime callback patch tablespecifies method text offsets that contains PC relative ad-
dresses to runtime callback routines. The table is required because the address distance be-
tween the method text object and the callback entry point is not known before run-time. This
address difference is exactly the value used as immediate data to relative calls. Relative ad-
dressing needs patching when target addresses are located outside the same block of code,
which is the case.

Prior to patching, PC relative addresses contents are the difference between the method text
base offset and the offset following the immediate data. Patching means adding the address
difference between the callback entry point and the method text to that value.

Figure 7.4 shows how runtime callback patching is implemented. During code generation,
each PC relative address to runtime callback is initialized with the difference between the base
offset and the offset following the immediate data.

00000000H − 00000104H = FFFFFEFCH

00000000H − 00000204H = FFFFFDFCH

Also the offset of the immediate data is recorded for patching according to the associated
runtime callback (athrow). At run-time, each entry in the runtime callback patch table is
visited and the address distance between the runtime callback entry point and the method text
base address is added to the immediate data at the associated offset.

108 THE X86 BACK-END

addressing
relative

00000000H:

00000200H:

00000100H:

Method Text

FFFFFDFCH

Callback Patch Table

00000100H

base
offset

athrow

FFFFFEFCH _athrow_

00000200H

athrow

01083000H:

01083200H:

01083100H:

Run-Time Image

00FFFDFCH

base
address

00FFFEFCH

athrow

02083000H:

Figure 7.4: Patching of runtime callbacks.

02083000H − 01083000H = 01000000H

FFFFFEFCH+ 01000000H = 00FFFEFCH

FFFFFDFCH+ 01000000H = 00FFFDFCH

7.3.3 Method Text Patch Table

Themethod text patch tableis similar to the runtime callback patch table but instead of spec-
ifying runtime calls, it specifies other directly called method texts. This table is also required
because the address distance between the method text objects is not known before run-time.
Method text references are symbolically identified as an entry in a class dispatch table (e.g.
java/lang/System [3]).

As occurred in the runtime callback patch table, prior to patching, PC relative address
contents are the difference between the method text base offset and the offset following the
immediate data. Patching means adding the address difference between method texts to that
value.

Figure 7.5 shows how method text patching is implemented. During code generation,
each PC relative address to runtime callback is initialized with the difference between the
base offset and the offset following the immediate data.

00000000H − 00000104H = FFFFFEFCH

00000000H − 00000204H = FFFFFDFCH

RELOCATION AND PATCH TABLES 109

addressing
relative

00000000H:

00000200H:

00000100H:

Method Text

FFFFFDFCH

Method Text Patch Table

00000200H

base
offset

java/lang/System[3]

FFFFFEFCH java/lang/System[7]

java/lang/System[3]

java/lang/System[7] 00000100H

01083000H:

01083200H:

01083100H:

Run-Time Image

00FFFDFCH

base
address

01000EFCH

java/lang/System[3]

02083000H:

java/lang/System[7]

02084000H:

Figure 7.5: Patching of method text calls.

Also the offset of the immediate data is recorded for patching according to the associated
method text (java/lang/System [3], java/lang/System [7]). At run-time, each entry
in the method text patch table is visited and the address distance between the method texts
addresses is added to the immediate data at the associated offset.

02083000H − 01083000H = 01000000H

02084000H − 01083000H = 01001000H

FFFFFEFCH+ 01001000H = 01000EFCH

FFFFFDFCH+ 01000000H = 00FFFDFCH

7.3.4 String Literal Patch Table

The string literal patch tablespecifies method text offsets that contains direct references to
string literals. The table is required because the run-time address of a string literal (instance
of String) is not known during code generation. Direct references to string literals are
obtained from the translation of theastring IR opcode.

Prior to patching, string references are initialized withnull (00000000H). Patching
means overwriting that value with actual string reference. The actual string reference is ob-
tained from theinternalized string table(seeString.intern() API call).

Figure 7.6 shows how string literal patching is implemented.

110 THE X86 BACK-END

addressing
absolute

01083000H:

01083100H:

Run-Time Image

base
address

02083000H

"Hello, World!"

02083000H:

00000000H:

00000100H:

Method Text

base
offset

00000000H "Hello, world!"

String Literal Patch Table
"Hello, world!" 00000100H

Figure 7.6: Patching of string literal references.

7.3.5 Meta Class Patch Table

The meta class patch tablespecifies method text offsets that contains direct references to
meta class objects. The table is required because the run-time address of a meta class object
(instance ofClass) is not known during code generation. Direct references to meta class
objects are obtained from the translation of theaclass IR opcode.

Prior to patching, meta class references are initialized withnull (00000000H). Patch-
ing means overwriting that value with actual meta class reference.

addressing
absolute

00000000H:

00000100H:

Method Text

base
offset

00000000H java/lang/System

Meta Class Patch Table
java/lang/System 00000100H

01083000H:

01083100H:

Run-Time Image

base
address

02083000H

java/lang/System

02083000H:

Figure 7.7: Patching of meta class references.

Figure 7.7 shows how meta class patching is implemented.

7.4 Back-End Improvements

The current implementation of the x86 back-end still lacks a lot of improvements. The most
important improvements deal to:

BACK-END IMPROVEMENTS 111

Processor SpecializationThe back-end should be split in multiple back-ends sharing a com-
mon framework — one for each base processor of the Intel family. This would give us
the opportunity to generate better code for machines that have processors with better
hardware resources.

Instruction Selection The instruction selection must be simplified not to address expression
tree register allocation. We noticed that trying to allocate registers to expression trees
for a CISC machine results in large and heavy matchers. Removing this task from
instruction selection is a better choice. The new implementation would be faster and
consume less memory.

Global Register Allocation Since register allocation is not performed during instruction se-
lection, a register allocator should be provided. Global register allocation does a map
from virtual registers to machine registers trying to minimize memory accesses. It may
be extended to allocate machine registers also to local variables that would be removed
from the stack frame.

Peephole OptimizationsSome peephole optimizations should be incorporated into the x86
back-end. Peephole optimization is a gain-proven cost-effective well-known technique
used to implement simple optimizations based on a small window of code. Peephole
optimization could be used in the x86 back-end to find and replace segments of code that
can be rewritten as machine idioms (e.g. hardware loops and SIMD MMX instructions).

Instruction Scheduling For superscalars processors, instruction scheduling is an important
optimization. It is basically the reordering of instructions in order to optimize the pro-
cessor pipeline instruction flow.

Chapter 8

Runtime Environment

This chapter describes the Client JVM runtime implementation. The runtime is composed of
a garbage-collected heap, multiple thread stacks, a monitor allocation table and the JNI im-
plementation. Garbage collection, is the most complex runtime component, and thus deserves
a separate chapter (Chapter 9).

8.1 Heap Structures

The garbage-collected heap is a linked-list of memory blocks. The allocation of memory
blocks is done in page units, using the underlying operating system memory allocation inter-
face. Each memory block, contains a sequence of word-aligned heap objects placed contigu-
ously inside the block. There are six types of heap objects, namely:

Ordinary Objects Instances of ordinary classes (e.g.String , Thread , etc).

Array Objects Instances of array classes.

Method Text Objects Instances of classMethodText , each one representing a Java method
binary translation.

Meta Class Objects Instances of classClass , each representing a loaded class.

Free Cells Memory blocks not currently associated to the storage of a Java object.

Block Records Information about the current heap memory block in the heap linked-list.

The first memory block in the heap linked list is the only block allocated ahead of time. It is
allocated in the data segment and contains objects resulting from the core libraries embedding
(see Chapter 10).

In addition to the memory block linked-list, the heap implementation provides afree cell
cache, as being the usual implementation of the allocator. It is a table used to speed up the
search for small free cells during allocation. Each cache entry points to the first element of
a linked-list of fixed-size free cells. The allocator implementation is described in details in
Section 8.2.

113

114 RUNTIME ENVIRONMENT

Each heap object has a two-word internal header which contains information associated
to the heap implementation. The internal header has a negative offset and its contents varies
according to the object type.

8.1.1 Ordinary Objects

Ordinary objects are instances of ordinary classes. The heap layout of ordinary objects, de-
picted in Figure 8.1, is logically divided in two areas: the inherited fields area and the new
fields area.

GC Info

Class ReferenceProgram
References

Fields

Inherited

New

Fields

Figure 8.1: Ordinary objects layout.

The inherited field area is used to store instance fields declared in superclasses. Its layout
must match the layout of both inherited and new field areas of the superclass. The new field
area is used to store instance fields declared in the current class. However, sometimes new
fields are placed in the inherited fields area to fill gaps left by word alignment. The placement
of instance fields in the field areas is done by the Server JVM as described in Section 4.5.2.

For ordinary objects, the internal header is composed of its class reference, used to deter-
mine its type, its size and implement virtual calls, and theGC Infoword, which is a bit field
that contains information regarding monitor, garbage collection and heap implementations.

8.1.2 Array Objects

Array objects are instances of primitive and reference arrays. The heap layout for array objects
is depicted in Figure 8.2. As in the case of ordinary objects, array objects have inherited and
new field areas. In addition, it have a variable length area reserved for the array elements. The
inherited and new fields areas are usually empty for array objects; therefore the access to the
elements can be done directly using their reference as the base offset. Array classes are final,
so its variable length layout does not need to be matched by subclasses.

The internal header of array objects is composed of its class reference and its length. The
actual size of an array object is the sum of its instance size, retrieved from class, with its length
scaled by its element width. Since there is no room in the internal header for the GC Info, it is
placed after the array elements area.

HEAP STRUCTURES 115

Class ReferenceProgram
References

Length

Inherited

Fields

New

Fields

Elements

Array

GC Info

Figure 8.2: Arrays layout.

8.1.3 Method Text Objects

A method text object is a first-class object that represents the binary translation of a Java
method. It has a special semantics, and its layout is depicted in Figure 8.3. Like arrays, the
MethodText class is final, and thus no subclasses will have to match its layout. Also, the
inherited and new fields areas are usually empty (it declares no fields and extendsObject ,
which also declares no fields in its standard implementation).

The binary code is placed right after the new fields area. It contains not only the method
translation, but also the exception catching routine and the live frame references, stack tracing,
and method text reference tables, that were described in Section 7.2. Following the binary code
area comes a four entry table that identifies these entities inside the method text. The reference
to the class that declares the associated method is provided as well.

The internal header of method text objects is composed of its class reference (classMethodText)
and a tail pointer. The tail pointer is required to determine the method text size since the binary
area has a variable length. Also, it identifies the bottom of the four entry table described above
used by the runtime to access the method text internals. That table has a fixed-size and could
have been placed after the new fields area. However, once both inherited and new fields areas
are usually empty, moving that table to the bottom makes the binary code entry point equals
to the method text reference, simplifying method calls. At last, since no room is left for the
GC Info in the method text internal header, it is placed after the four entry table.

116 RUNTIME ENVIRONMENT

Class Reference

Tail Pointer

Inherited

Fields

New

Fields

Code

Binary

Declaring Class

Inspection Table

Reference Table

GC Info

Program
References

Entry
Point

Catcher Routine

Figure 8.3: Method texts layout.

8.1.4 Meta Class Objects

Meta class objects are instances of final classClass . Apart from holding its instance fields,
each meta class object is also the common placeholder for the dispatch table and static fields
area of the Java class they represent. Also they provide room to store extra information re-
quired by the runtime to implement some of its operations (e.g. runtime type compatibility
checks, linkage state, etc). Figure Figure 8.4 depicts the layout for meta class objects.

Following the inherited and new field areas comes the dispatch table which is composed
of three parts. The first part is a single entry to the class initializer (<clinit>); this entry is
null if the class does not provide a static initializer. The second part is the subset of dispatch
entries associated to methods that may be overriden by subclasses. The layout of subclasses
must match the layout of the superclass for these entries. The third part is the subset of method
entries that will never be overriden by subclasses (i.e. static or final methods and constructors).

The next area in the meta class object layout is reserved for static fields, those fields de-
clared static in the class represented by the current meta class object. On the sequence, comes
the native pointer table, one for each native method declared in the associated class. Native
methods are resolved and bound by the runtime during their first use; after resolution, the
entry point address of the actual JNI native method implementation is stored into the native
pointer table.

The internal fields area contains information used by the runtime to access and operate

HEAP STRUCTURES 117

Class Reference

Tail Pointer

Inherited

Fields

New

Fields

Program
References

Dispatch
Table

Entries

New Entries

Inherited

Overridable

Class Initializer

Static

Fields

Non-Overridable

New Entries

Native

Pointers

Internal

Fields

Meta Info Pointer

GC Info

Figure 8.4: Meta classes layout.

118 RUNTIME ENVIRONMENT

over the class object and its instances. This information comprises:

• Name and version number.

• Superclass reference.

• Interfaces references and associated dispatch table base offsets.

• Defining class loader reference.

• Element class reference, dimensions, and element width (for array classes).

• The linkage state, any of: loaded, linked, initialized or erroneus.

• The initialization thread id (refer to the class initialization procedure [LY99,§2.17.5]).

• A flag indicating if the instances need to be finalized, as part of garbage collection
efficiency [LY99, 2.17.7].

• The offset and type of theweak reference(if the case).

• Static and instance sizes.

• Static and instance reference table offsets and sizes.

• Overridable dispatch table entry count.

• Non-overridable dispatch table entry count.

The meta info pointer points to a structure that contains meta information about the asso-
ciated class. This meta class information is actually the information provided by the META

phase, as described in Section 4.5.3, required to print stack traces and by theReflection API.
The internal header of meta class objects is composed of its class reference (classClass)

and a tail pointer. The tail pointer is required to determine the meta class size. Since no room
is left for the GC Info in the method text internal header, it is placed just after all areas.

8.1.5 Free Cells

Free cells objects are heap objects whose storage was reclaimed by garbage collection and
still was not assigned to an actual Java object. The layout of free cells is simple, as depicted
in Figure 8.5. It is basically a size word followed by some uninitialized space followed by a
trailing mirror size word.

For three-word free cells (including the size of internal header) the size words overlap.
Two-word free cells does not provide a size word but a bit set in its GC Info word (see section
Section 8.2.1). One-word free cells are not allowed since they cannot be represented as a heap
object (every heap object must have a two-word internal header), this is done by preventing
the allocator from fragmenting free cells that would leave just one-word remaining.

Non-Java heap objects, i.e. free cells and block records, are identified by having a null
reference in their internal header, instead of a class reference as in the case of Java objects.

ALLOCATOR IMPLEMENTATION 119

Null ReferenceRuntime
Pointers

GC Info

Cell Size

Unused

Area

Cell Size

Figure 8.5: Free cells layout.

8.1.6 Block Records

Block records store information about a particular memory block of the heap linked list. It is
placed at the bottom of the memory block and contains basically two information: the memory
block size (including itself), and a pointer to the block record of the next memory block in the
heap linked list. The layout of a block record can be seen in Figure 8.6. The pointer to the
next block record is not shown because it is encoded as part of the GC Info word, as described
further in Section 8.2.1.

Null ReferenceRuntime
Pointers

GC Info

Block Size

Figure 8.6: Block Records layout.

8.2 Allocator Implementation

This section describes the heap memory allocator implementation. It does not cover all the
details behind the implementation, but gives the reader a broad idea about how it works. The
allocator has no great innovations if compared to similar implementations for other language
runtime implementations.

8.2.1 GC Info Word

Every heap object has a two-word internal header. One of the words holds a reference to the
class of a Java object or a null reference for non-Java objects. The other word is theGC Info
word, or an object specific value that enables the localization of the GC Info word inside it.

120 RUNTIME ENVIRONMENT

As the name implies, the GC Info word holds garbage collection information associated to
each particular object. But it also holds information about the object monitor and heap flags
as well1. Figure 8.7 shows the contents of the GC Info word for each object type.

n-1 2

Next Record Pointer

1 0

1

Block Record GC Info

Unused

Free Cell/Block Record Bit

n-1 2

Next Cell Pointer

1 0

0

Free Cell GC Info

Zero Size Bit

Free Cell/Block Record Bit

n-1 1 0

Class Instance GC Info
78

Monitor ID GC Bits

Previous Free Bit7 6 5 4 3 2 1

Strong Reachability Bit

Soft Reachability Bit

Weak Reachability Bit

Phantom Reachability Bit

Finalizer Reachability Bit

Gray Bit

Finalized Bit

Figure 8.7: GC Info bits for each heap object.

The GC Info for Java class instances can be divided in three parts. The first part is com-
posed of bit 0 which is set by the heap allocator to indicate that the area immediately preceding
the object is a free cell. That information is used to merge two consecutive free blocks when
an object is garbage collected. The second part goes from bit 1 to bit 7 and is information
used by the garbage collection algorithm to store the state of the object. Bit 1 is used to mark
objects who have been finalized. Bit 2 is agraybit required by incremental garbage collection.
Bits 3 to 7 makes up the the reachability for the associated object. Bit 3 is set whenever the
object can become live through the execution of another object finalizer method. Bits 4 to 7

1The nameGC Info may not be so appropriate. It was kept in this documentation because, since early
implementation, it was used repeatedly in the source code.

ALLOCATOR IMPLEMENTATION 121

are set according to the reachability type for the object, if none of these bits is set then the
object is unreachable. Garbage collection is treated on Chapter 9.

The GC Info for free cells contains two flag bits and a pointer. The pointer points to the
next free cell in the linked list of fixed size free cells. That linked list is reachable by the free
cell cache table. Since all free cells are word aligned the least two bits (three bits for 64-bit
systems) are always zero and their storage can be reused. One of these bits (bit 1) is used to
distinguish free cells from block records. The other bit (bit 0) is set to identify empty free
cells.

The GC Info for block records is similar to the GC Info for free cells except that bit 0 is
unused and the pointer points to the block record of the next heap memory block in the heap
linked list.

8.2.2 Allocation Procedure

This section describes the heap allocation procedure. Whenever a Java class is instantiated
storage for it must be obtained from the garbage-collected heap. As seen before, the size
of the storage area depends of the class being instantiated. The procedure herein described
allocates an area given that its size is already provided.

First we describe the global variables required by the heap implementation. These vari-
ables comprise a pointer to the block record associated to the head memory block of the heap
linked list; a free cell cache indexed by size for small objects; and a free cell cache for big
objects (usually big objects are considered to have size greater than 1024 words).

blockrecord heaptop
freecell smallcache[SMALLSIZE]
freecell bigcache

Next we provide a helper function that, given a free cell already removed from the free cell
cache, adjusts the area size to the required size. This occurs because usually the search for an
small area may demand fragmenting a larger one. The remains of the area are inserted back
into the free cell cache. If the area has the expected size then the object placed right after the
free area is modified to reflect the fact that its preceding area is not free anymore.

void ReclaimTail(freecell f,integer size)
integer freesize← f.size
if freesize= size

(f+size).previousfree← false
else

f.size← size
f ← (f+size)
size← freesize-size
f.size← size
if size< SMALL SIZE

f.next← smallcache[size]
smallcache[size]← f

else

122 RUNTIME ENVIRONMENT

f.next← bigcache
bigcache← f

The following two procedures are used to search for a free area in both small and big free
cells caches. Attention should be given to the fact that free cells greater than the required
size in one word cannot be used to allocate the associated object. This is denied because that
would leave a one word free area which cannot be used to represent a heap object. If such
restriction is obeyed and an object is found, it is removed from the cache, its size is adjusted
and it is returned to the caller routine. If no appropriate free cell can be found in the caches, a
null pointer is returned.

freecell SearchSmall(integer size)
if size< SMALL SIZE

integer i ← size
if smallcache[i]6= null

freecell f← smallcache[i]
smallcache[i]← f.next
ReclaimTail(f, size)
return f

for i in size+2to SMALL SIZE-1do
if smallcache[i]6= null

freecell f← smallcache[i]
smallcache[i]← f
ReclaimTail(f, size)
return f

return null

freecell SearchBig(integer size)
if bigcache6= null

if bigcache.size= sizeor bigcache.size≥ size+2
freecell f← bigcache
bigcache← f.next
ReclaimTail(f, size)
return f

else
freecell prev← bigcache
freecell f← prev.next
while f 6= null

if f.size= sizeor f.size≥ size+2
prev.next← f.next
ReclaimTail(f, size)
return f

prev← f
f ← prev.next

return null

The main allocation procedure is shown below. First it tries to search for a free cell in both
small and big caches. If a free cell is not available then is requires the underlying operating

ALLOCATOR IMPLEMENTATION 123

system to allocate fresh memory. The size of the memory area to be allocated is the smallest
multiple of the memory page size that is big enough to hold the free cell (size), its header
(2 words), a block record (3 words), and still does not leave a one word space left blank (2
words). The new memory block is inserted into the heap linked list and extra space is inserted
into the free cell caches.

freecell Allocate(integer size)
freecell f← SearchSmall(size)
if f = null

f ← SearchBig(size)
if f = null

integer memsize← OSpagealign(2+size+2+3)
freecell f← OScommit(memsize)
if f = null

return null

blockrecord b← (f+memsize-1)
b.size← memsize
b.next← heaptop
heaptop← b

f ← (f+2)
f.size← memsize-2-3
f.next← null
ReclaimTail(f, size)

return f

8.2.3 Deallocation Procedure

This section details the heap deallocation procedure, it does the reverse of the allocation pro-
cedure. It reclaims used area, merging adjacent free cells, and inserts the new area in the free
cell cache.

The following routine searches and removes a particular free cell from the free cell caches.
Free cell caches are implemented as simple linked lists.

booleanRemoveFree(freecell f)
integer size← f.size
if size< SMALL SIZE

if smallcache[size]6= null
if f = smallcache[size]

smallcache[size]← f.next
return true

else
freecell prev← smallcache[size]
freecell p← prev.next
while p 6= null

if p = f
prev.next← p.next
return true

124 RUNTIME ENVIRONMENT

prev← p
p← prev.next

else
if bigcache6= null

if f = bigcache
bigcache← f.next
return true

else
prev← bigcache
p← prev.next
while p 6= null

if p = f
prev.next← p.next
return true

prev← p
p← prev.next

return false

The deallocation procedure is shown below. First it checks if the area immediately preced-
ing the area being deallocated is free, it does that in order to maximize free cells and thus avoid
fragmentation. If the preceding area is free, it is removed from the free cell cache and merged
with the object being reclaimed. The same thing occurs for the area immediately following
the object; if it is free, it is removed from the free cell cache and merged. At last if inserts the
resulting free cell into the caches, and updates the GC Info of the following object to record
that the preceding area is a free cell.

void Deallocate(object o)
integer size← o.size

if o.prevfree
freecell f← o
integer prevsize← (f-3).size
f ← f-(2+prevsize)
o← f
size← size+2+prevsize
RemoveFree(f)

freecell f← o+size+2
if f.class= null

if f.is free
size← size+2+f.size
RemoveFree(f)

f ← o
f.size← size
if size< SMALL SIZE

f.next← smallcache[size]
smallcache[size]← f

else
f.next← bigcache

ALLOCATOR IMPLEMENTATION 125

bigcache← f

o← f+size+2;
o.prevfree← true

8.2.4 Heap Traversal Procedure

This section presents the procedure for walking through the garbage-collected heap. This
procedure is required by the garbage collector to visit all objects, usually called when it is
operating in incremental mode or collecting the garbage.

This first routine returns the reference to the first object of the heap. From the heap linked
list head block record is starts scanning current block skipping free cells until it encounters a
Java object or the block record. In the last case it continues the scan in the next memory block.

object HeapStart()
blockrecord b← heaptop
object o← (b+1-b.size+2)
while o.class= null

freecell f← o
if f.is free

o← (f+f.size+2)
else

blockrecord b← f.next
if b = null

return null
o← (b+1-b.size+2)

return o

The following procedure is used to proceed to the next heap object given the current one.
What it does is jumping the area of the current object and searching for the next object in
memory blocks skipping free cells, as described above.

object HeapNext(object o)
object class← o.class
if class= Classor class= MethodText

o← (class.tailpointer+3)
else

integer size← class.instancesize
if class.dimensions6= 0

size← size+o.length*class.arraywidth+1;
o← (o+size+2)

while o.class= null
freecell f← o
if f.is free

o← (f+f.size+2)
else

blockrecord b← f.next
if b = null

126 RUNTIME ENVIRONMENT

return null
o← (b+1-b.size+2)

return o

8.3 Thread Stacks

At run-time, each started Java thread has its ownthread stackallocated in the virtual machine
address space using underlying platform primitives. In our implementation, each Java thread
is implemented as a native thread for simplicity. At first, we decided not to implementgreen-
threadsnor any other resource-aware alternate strategy, though, in the future, they may be
incorporated with reasonable ease.

Different from other Java runtime implementations, our implementation stores Java stack
frames in the native thread stack interleaved by native frames. The detection of stack overflow
is not done explicitly on each method call, but captured in a native stack overflow signal
handler, or whatever similar mechanism available in the underlying platform. Even though
detecting stack overflow using this approach eliminates method calls overhead, it revealed
limitations of our exception catching scheme when dealing with its assynchronous nature.

8.3.1 Stack Organization

The stack organization for our interleaved stack implementation is exemplified in Figure 8.8.
Java stack frames are composed of five elements: the parameters, the return address, the pre-
vious frame pointer, a reference to the associated method text and the local variables. During
native calls, the topmost Java frame pointer is stored in athread local storagein order to be
retrieved back when Java code starts executing again.

When the native implementation decides to do a Java method callback, it must create a
pseudo frame in the stack used to separate the native and Java areas in the stack. The pseudo
frame, similar to a Java frame, has parameters provided from JNI calls, a return address, and a
frame pointer backup. In addition, it has a null reference, instead of a method text reference,
used to identify the pseudo frame; a previous Java frame pointer read from the thread local
storage during the callback; and a area reserved for saving registers assumed not to be written
by callees using the standard native protocol.

8.3.2 Stack Traversal Procedure

In this section we provide the procedure for traversing a thread stack. The thread stack traver-
sal is required when printing stack traces, collecting garbage collection root references, and
discovering caller classes. This last operation is required by the Java security model.

The stack traversal procedure is fairly simple, and is below:

booleanTraverseStack(addresstop frame,booleanprocess(address, address))
addressframe← top frame
while frame 6= null

THREAD STACKS 127

Null Reference

Previous Frame

Return Address

Parameters

Null Reference

Previous Frame

Return Address

Parameters

Parameters

Return Address

Previous Frame

Method Text

Local
Variables

Parameters

Return Address

Previous Frame

Method Text

Local
Variables

Null Pointer

Callee-Save
Registers

Parameters

Return Address

Previous Frame

Method Text

Local
Variables

stack
growth
direction

Java Frame
Topmost

Pseudo Frame
Callback

Organization
Native Stack

Prev Java Frame

Callee-Save
Registers

Java Frame
Native Method

Java Frame
Ordinary

Pseudo Frame

Native Stack
Organization

Bottom

Figure 8.8: Stack organization.

128 RUNTIME ENVIRONMENT

addressret address← frame.retaddress
frame← frame.previous
object methodtext← frame.methodtext
if methodtext= null

frame← frame.javaprevious
else

booleancontinue← process(frame, retaddress)
if not continue

return false
return true

To traverse the thread stack we need two parameters, the topmost Java frame pointer,
which can be read from the thread local storage, and an action function. Then we start visiting
Java stack frames skipping pseudo frames until we find the bottom pseudo frame. For each
Java frame the action function is called passing as parameter the frame pointer and the return
address of its callee. The stack traversal continues while the action function returns false or
the bottom pseudo frame is reached. It returns true if definately all Java frames have been
processed.

8.3.3 Stack Overflow Detection

As said before, in our implementation the stack overflow detection is done by handling a
native stack overflow signal, or a similar mechanism in the underlying platform. In the signal
handler code, a new instance of classStackOverflowError must be created and thrown
in the context of the currently executing method.

However, since native stack overflow may occur arbitrarily, it is possible that theprogram
counterat that time assumes any value inside the address space of the method text. This
turns out to be a problem because the exception catching mechanism we have implemented
(described in Section 6.3) requires that exceptions occur at some prescribed points. Therefore
it may not be possible to determine the exception catching entry point to transfer control.

The solution we provided to this problem is awkward. Whenever we cannot determine the
exception catching entry point for a given program counter value, in the context of the topmost
java frame, we throw the exception in the caller frame instead. Throwing the exception in the
caller frame can always be done because every call site either has an associated exception
catching entry point or does not catch exceptions at all.

The adoption of this scheme dictates that our implementation may sometimes ignore
StackOverflowError exception windows. It was our belief that rarely a program catches
stack overflow exceptions. However this was a fallacy. Although programs that catch stack
overflow exception a rare, many programs catch all types of exception usually to free re-
sources (try /finally construct). Ignoring these handlers may lead to unpredictable pro-
gram behavior (e.g. object locks being hold when the stack overflow occurs in a synchronized
method).

A better approach is to avoid the generation of code that may overflow the stack in the
program points for which the exception catching entry point cannot be determined. We intend
to use this approach in the future.

MONITOR IMPLEMENTATION 129

8.4 Monitor Implementation

In our implementation, each class instance has in its GC Info word 24 bits (56 bits for 64-
bit machines) that are reserved to implement its associated monitor. These 24-bits are used
to index a monitor table where the object monitor lies. Since most objects do not use their
monitor, storing an index in its header — rather than the whole monitor — saves storage
space. However, a monitor must be allocated to the object whenever it is first used, and that
requires precise synchronization. Monitors are released, becoming available to others, when
the object is garbage collected.

union monitor
OSmutex mutex
integer next

integer top id← 1
integer recycled← 0
monitor monitors[MAXMONITORS]

The monitor table is a table of platform dependent monitors. The monitor at index 0 is
a special monitor used to synchronize during monitor allocation. The management of free
monitors is done using a free monitor linked list. Since the monitor table is statically allocated
in the data segment of the virtual machine, we always try to reuse free monitors at the bottom
of the table prior to allocating a monitor on the top of the table. This is done in order to avoid
the commitment, i.e. physical allocation, of the associated memory pages by the underlying
operating system.

The procedure for entering an object monitor — including its compulsory allocation — is
shown below:

booleanMonitorEnter(object o)
integer id← o.monitor id
OSlock(monitors[id].mutex)
if id = 0

id← o.monitor id
if id = 0

if recycled6= 0
id← recycled
recycled← monitor[recycled].next

else
if top id = 0

OSunlock(monitors[0].mutex)
return false

id← top id
top id← (top id+1) mod MAX MONITORS

o.monitor id← id
OSinit(monitors[id].mutex)

OSunlock(monitors[0].mutex)
OSlock(monitors[id].mutex)

return true

130 RUNTIME ENVIRONMENT

At first, it locks the monitor using the object monitor id. If no monitor has been allocated to
the object it will lock monitor at entry 0. After locking, it tests the monitor id before locking.
If it was non-zero then the object has a monitor allocated already. Otherwise, it reads the
monitor id again to check if the monitor has been allocated concurrently while it was blocked
by the lock operation. If this is the case, it releases monitor at index 0 and locks monitor at
the specified index. If no monitor has been associated to the object yet, then a new monitor is
allocated, initialized, the monitor at index 0 is released, and the new monitor is locked.

The procedure for exiting an object monitor is trivial, simply unlocks the associated mon-
itor.

void MonitorExit(object o)
integer id← o.monitor id
OSunlock(monitors[id].mutex)

When an object is garbage collected, the monitor that has been associated to it, if any, is
recycled. This is done synchronizedly using the monitor at index 0.

void MonitorRecycle(object o)
integer id← o.monitor id
if id 6= 0

OSlock(monitors[0].mutex)
monitors[id].next← recycled
recycled← id
OSunlock(monitors[0].mutex)
o.monitor id← 0

These routines where crafted to implement monitors efficiently while still preserving the
correct behavior for all concurrency possibilities.

8.5 JNI Implementation

Our runtime implementation has full support for theJava Native Interface(JNI). JNI is used to
instantiate the virtual machine from native programs as well as implementing native methods.
We highlight the points we judge to be important:

No Reference HandlesIn our implementation, JNI object wrapper types are direct references
to their target objects. It is a common implementation to use one level of indirection
when implementing the wrapper types, so that the native program hold handles to the
objects. These handles are indices to a table that holds the reference to the object.
Representing wrapper types as direct references speeds up the implementation of most
operations though it makes difficult the implementation of JNI weak references. JNI
weak references are references automatically created by the virtual machine when an
object becomes weakly reachable. In the handle based implementation this means writ-
ing a null reference in the associated table entry. In our implementation however, it

JVMDI AND JVMPI SUPPORT 131

is not possible to clear each reference because they became available to the native pro-
gram which may have copied it to other locations. Luckly, the only JNI call that requires
checking if a weak reference has been cleared isIsSameObject . During this call, if
one of the parameters is null and the other is not, we search all internal reference tables
to check if the non-null reference is not strong and also not present in the weak reference
table. In this case, the routine will be slower than usual. The policy we recommend and
follow is to minimize the use and the functionality of the native methods. Native meth-
ods where not meant to improve performance, but to implement semantics not available
in the bytecode.

String Manipulation in Java All string manipulation calls of the JNI are done by invoking
the appropriate Java implemented methods of the classString . Including the imple-
mentation of the intern set of strings (seeString.intern()).

Local References Allocation/Deletion is Fast Using Stack ProtocolLocal references are ref-
erences made available to the native program during the liveness of a native method
execution. They need to be recorded as live to implement proper garbage collection.
In our implementation they are recorded in an array of references. New references are
inserted at the end of the array. The deletion of local references requires scanning back-
wards the whole array and moving the reference at the top of the stack to the freed entry.
Therefore deleting references in the reverse allocation order is the better choice since
they will be found right in the first entry.

Arguments Array is Inefficient Invoking Java methods passing arguments through an array
rather then the stack is inefficient. These calls are mapped to their equivalent stack based
version requiring parsing method descriptors to find out which array elements uses one
or two words.

8.6 JVMDI and JVMPI Support

In our design, we have focused on a high-performance end-used JVM, therefore we provide
no implementation for the standardJava Virtual Machine Debugging Interface(JVMDI) and
Java Virtual Machine Profiling Interface(JVMPI). Neither the support nor the impact of the
implementation of these interfaces were part of our requirements when we set up our goals.
Currently, the lack of knowledge about these interfaces requirements prevents us from mea-
suring the difficulty of incorporating them in our implementation.

Chapter 9

The Garbage Collector

This chapter describes thegarbage collector(GC) implemented as part of our JVM runtime.
At first, we discuss the desired features of our garbage collection scheme, as they were defined
during its design. In the sequence, we identify the GC runtime requirements, and describe our
implementation. At last, we focus on the improvements to the current scheme.

9.1 Desired Features

The definition of the behavior and desired features of the garbage collector has a great impact
over the runtime design (and the opposite is also true). For instance, the implementation of
an accurate garbage collector is only possible if the available runtime provides support for
discovering references in stack frames and objects. On the other hand, if the available GC
does not handle concurrency, the runtime must provide proper synchronization, which may
degrade performance. Therefore, the best strategy is design the GC having the runtime in
mind, and vice-versa.

The features we have defined for our garbage collection scheme are listed below. All of
them where conceived based on a GC/runtime co-design. Some of them are not yet available
in our preliminary implementation.

Accurate The set of memory locations that contains object references can be obtained accu-
rately. No pointer aliases will prevent unreachable objects from being collected, thus
eliminating GC memory leaks.

Cooperation Without Run-Time Penalty Mutators, i.e. user threads, cooperate with the GC
without run-time penalty (e.g. no reference counting).

Pinned Objects Objects cannot be moved to alternate memory locations. They must have the
same address and use the same storage during all their lifetime. This denies the use of a
copying collection scheme.

Incremental The garbage collection may be suspended and resumed, interleaved with muta-
tor execution. The GC executes as a separate thread or co-routine.

133

134 THE GARBAGE COLLECTOR

Concurrent Mutators may execute during garbage collection.

Generational Objects may be divided in generations. Each generation deserves more or less
GC attention based on the probability of its survival to yet another collection.

9.2 Runtime Requirements

In order to perform the GC task, the runtime must provide support to, or interact with, the
garbage collector. The runtime is required to cooperate with the GC exactly in two tasks:
to discover references inside objects and stack frames; to access each thread stack synchro-
nizedly.

In order to implement an accurate garbage collector, the runtime generates extra GC infor-
mation embedded in meta class and method text objects. With that information the garbage
collector can identify roots and traverse the whole object graph. We have already described
how that information is computed and represented in Chapter 7 and Chapter 8. In Section 9.3,
we show how that information can be used to implement the garbage collection.

At certain prescribed times, each thread must provide safe access to the contents of its
stack. Also, the GC must be able, at that time, to suspend the thread if desired. In our imple-
mentation, this runtime requirement is implemented non-preemptively; i.e., prior to proceed,
the GC must wait for each thread until it does a runtime callback. This occurs because we
renounce to use thread execution contexts in order to simplify and increase the runtime porta-
bility. However, the arguments we present to explain why this scheme is effective are similar
to the arguments we have presented for assynchronous exceptions in Section 6.6.

9.3 Implementation Details

This section provides details about our current garbage collection implementation. The current
implementation is simple and straightforward. It works in aMark-and-Sweep[JL96, §2.2]
fashion, and is non-incremental nor concurrent. Before garbage collection, all threads are
suspended to avoid problems when collecting references in their stacks and when accessing
the heap.

Themarkphase is done in a mixed-mode between iterative and depth-first recursive. An
iterative mark phase works by doing multiple passes on the heap, marking grayed objects
and coloring their children, until all reachable objects are marked. A depth-first recursive
mark phase visits each root object and does a depth-first traversal until the complete reachable
object subgraph is marked. We adopt a mixed-mode mark phase, in which it iterates doing
a bounded depth-first traversal, because the convergence for the iterative method is too slow,
and the stack size for a pure recursive depth-first method can be prohibitive. As dictated
by the Java language, marking an object is not simply stating that it is reachable, one must
provide complete reachability information including its strength (strongly, softly, weakly, and
phantom) and its type (direct or finalizer)[GJS96,§12.6].

IMPLEMENTATION DETAILS 135

The sweepphase is simply a traversal of the heap, reclaiming the storage from the un-
reachable objects. For the Java garbage collector, this also means scheduling unreachable
unfinalized objects to finalization, and clearing weak references.

The following routine marks an object based on a given reachability. It returns true if
the object reachability has changed. Children are marked if the maximum depth was not yet
reached.

booleanMark(object o, setreachability,integer depth)
if o 6= null

reachability← reachability∪ o.reachability
if reachability6= o.reachability

o.reachability← reachability
o.gray← true
if depth= MAX DEPTH

return true
else

return MarkChildren(o, depth)
return false

The next routine marks the children of a gray object. Based on the object class (and its
superclasses), it is possible to determine which memory locations inside it are references; they
are marked with the same reachability as the current object. Array, meta class and method text
objects are treated specially since they provide extra references. At last, we mark the target
reference of each soft or weak wrapper object using its corresponding reachability.

booleanMarkChildren(object o, integer depth)
booleanchanged← false
if o.gray

o.gray← false
setreachability← o.reachability

changed←↩or Mark(o.class, reachability, depth+1)

object class← o.class
while clazz 6= null

object[] refs← o@class.instancerefs offset
for integer i in 0 to class.instancerefs count-1

changed←↩or Mark(refs[i], reachability, depth+1)
class← class.superclass

class← o.class

if class= “Class”
object[] refs← o@class.dispatchtableoffset
for integer i in 0 to class.dispatchtableentries-1

changed←↩or Mark(refs[i], reachability, depth+1)
refs← o@class.staticrefs offset
for integer i in 0 to class.staticrefs count-1

changed←↩or Mark(refs[i], reachability, depth+1)
changed←↩or Mark(o.loader, reachability, depth+1)

136 THE GARBAGE COLLECTOR

changed←↩or Mark(o.elementClass, reachability, depth+1)
changed←↩or Mark(o.superClass, reachability, depth+1)
for integer i in 0 to o.interfacescount-1

changed←↩or Mark(o.interfaces[i], reachability, depth+1)

if class= “MethodText”
changed←↩or Mark(o.declaringclass, reachability, depth+1)
for integer i in 0 to o.referencescount-1

changed←↩or Mark(o.references[i], reachability, depth+1)

if o.class.dimensions> 0
if o.class.name[1]= ‘L’ or o.class.name[1]= ‘[’

object[] refs← o@class.instancesize
for integer i in 0 to o.length-1

changed←↩or Mark(refs[i], reachability, depth+1)

if o.class.issoft
changed←↩or Mark(o.weak,{ SOFTLY} ∪ (reachability∩ { FINALIZER }), depth+1)

if o.class.isweak
changed←↩or Mark(o.weak,{WEAKLY } ∪ (reachability∩ { FINALIZER }), depth+1)

return changed

The following routine marks all references live in the stack of a particular thread. It tra-
verses the stack using return addresses to determine the live reference variables at the time
each call was performed. Also the method text associated to each stack frame is marked.

booleanMarkStack(addressframe)
booleanchanged← false

booleanMarkFrame(addressframe,addressret address)
changed←↩or Mark(frame.methodtext,{ STRONGLY}, 0)
byte[] lives← frame.methodtext.lives[retaddress]
integer i ← 0
while lives[i] 6= 0

changed←↩or Mark(frame[lives[i]],{ STRONGLY}, 0)
i ←↩+ 1

return true

TraverseStack(frame, MarkFrame)
return changed

The main garbage collection routine is presented next. It may be divided in three phases:
initialization, mark and sweep.

The initialization phase consists of traversing the entire heap reseting the reachability and
clearing the gray bit for all objects.

void GC(javavm jvm)

/* Reset objects */

IMPLEMENTATION DETAILS 137

object o← HeapStart()
while o 6= null

o.reachability← ∅
o.gray← false
o← HeapNext(o)

The mark phase is subdivided in three parts: marking roots, marking finalizer reachable,
and iterating. The marking roots part marks all direct references from the JVM, and its threads,
to the heap. The marking finalizer reachable part marks all objects not yet finalized as finalizer
reachable (by themselves). Finally, the iterating part marks, using the according reachability,
all remaining objects in the object graph.

booleanchanged← false

/* Mark roots */
changed←↩or Mark(jvm.systemthreadgroup,{ STRONGLY}, 0)
for integer i in 0 to jvm.globalscount-1do

changed←↩or Mark(jvm.globals[i],{ STRONGLY}, 0)
for integer i in 0 to jvm.weakscount-1do

changed←↩or Mark(jvm.weaks[i],{WEAKLY }, 0)
jnienv env← jvm.envs
while env 6= null

changed←↩or Mark(env.thrown,{ STRONGLY}, 0)
changed←↩or Mark(env.thread,{ STRONGLY}, 0)
changed←↩or MarkStack(env.topjavaframe)
jniframe frame← env.topjniframe
while frame 6= null

for integer i in 0 to frame.entrycount-1do
changed←↩or Mark(frame.entries[i],{ STRONGLY}, 0)

frame← frame.previous
env← env.next

/* Mark finalizer reachable */
o← HeapStart()
while o 6= null

if not o.finalized
changed←↩or Mark(o,{ FINALIZER }, 0)

o← HeapNext(o)

/* Iterate marking all heap */
while changed

changed← false
o← HeapStart()
while o 6= null

changed←↩or MarkChildren(o, 0)
o← HeapNext(o)

The sweep phase is also subdivided into three parts: reclaiming unreachable objects,
queueing unfinalized objects for finalization, and clearing weak references. The reclaiming

138 THE GARBAGE COLLECTOR

part traverses the heap looking for unreachable objects (reachability set is empty) and reclaim
their storage and monitor. Unreachable objects are known to be already finalized because, if
not, their reachability set would not be empty. The queueing unfinalized objects part traverses
the heap looking for finalizer reachable objects whose strength is at most phantom. Those ob-
jects are marked as finalized and enqueue for finalization (they then become strongly reachable
again). Finalization occurs when the methodRuntime.runFinalization() is invoked
by the user, or by the runtime under low memory conditions. At last, weak reference wrappers
whose target reference has a reachability weaker than required are cleared and enqueued (see
ReferenceQueue class in the standard API).

/* Reclaim unreachable */
o← HeapStart()
while o 6= null

object moribund← o
o← HeapNext(o)
if moribund.reachability= ∅

RecycleLock(moribund)
Deallocate(moribund)

/* Enqueue unfinalized */
o← HeapStart()
while o 6= null

setreachability← o.reachability∩ { STRONGLY, SOFTLY, WEAKLY, PHANTOM}
if reachability= ∅ or reachability= { PHANTOM }

if not o.finalized
EnqueueForFinalization(o)
o.finalized← true

o← HeapNext(o)

/* Clear weak references */
for integer i in 0 to jvm.weakscount-1do

object weak← jvm.weaks[i]
if weak 6= null

if weak.reachability∩ { STRONGLY, SOFTLY} = ∅
jvm.weaks[i]← null

o← HeapStart()
while o 6= null

if o.class.issoft
if o.weak6= null

if o.weak.reachability∩ { STRONGLY} = ∅
o.weak← null
EnqueueReferenceObject(o)

if o.class.isweak
if o.weak6= null

if o.weak.reachability∩ { STRONGLY, SOFTLY} = ∅
o.weak← null
EnqueueReferenceObject(o)

o← HeapNext(o)

/* End of GC */

FUTURE IMPROVEMENTS 139

9.4 Future Improvements

The most important improvement our current garbage collection asks for is the incorporation
of a generational strategy. Although generational collection wastes more memory, it reduces
significantly the pause time of each collection. This has been proven to work on other Java
runtime implementations[Sun98, FKR+99].

An alternate possibility, is implementing a concurrent collector that runs in a separate
thread. It is a good scheme specially if the JVM is targeted to a multiprocessor system. How-
ever, care must be taken to implement it correctly, without increasing execution contention.

Chapter 10

Automatic Machine Generation

This chapter covers automatic machine generation. Automatic machine generation consists of
ahead-of-time linkage (including JIT compilation) of core libraries, which are embedded in
the runtime. The machine generator simulates a JVM heap as it loads and links the classes
specified in a configuration file. When all activities finish, an assembly file reflecting the heap
image placement, according to the specified target architecture, is output.

There are basically two reasons that motivate us to implement the automatic machine
generator. First, as seen in Chapter 8, many runtime tasks are implemented in Java, and
some of them are required to be promptly available upon machine startup. Second, the off-
line embedding of core libraries speeds up the machine bootstrap that occurs every time it is
started up.

Off-line embedding core libraries is a technique that succeeds based on the premiss that
core classes are not supposed to be replaced by users, nor will need to change before the next
JVM release.

10.1 Static Heap Image

Thestatic heap imageis a heap image reflecting some ahead-of-time link-time activities sym-
bolically performed and output by the machine generator. As expected, the static heap layout
must conform with the memory heap layout described in Chapter 8.

The objects that compose a static heap image are:

• Meta class objects, instances ofClass , representing the classes embedded.

• Method text objects, instances ofMethodText , representing methods declared in
those classes.

• String objects, instances ofString , implementing string literals directly referenced
from method texts.

• Array of char objects, instances ofchar[] , used to store the contents of string objects.

141

142 AUTOMATIC MACHINE GENERATION

Two details must be highlighted about the static heap image. First, method text objects
are translated using the appropriate back-end for the underlying architecture being targeted
by the machine generator. Second, strings and their associated array of chars must be placed
contiguously, so that the runtime can identify that association during the heap initialization
procedure (see Section 10.4).

The static heap image must provide imported and exported symbols information in order to
be linked with the C runtime by the platform linker. It exports a single symbol,heapstart ,
that is used by the runtime to locate the static heap in its address space. The symbols imported
by the static heap image are exactly the labels for runtime callback entry points, namely:

• Exception throwing: athrow .

• Long integer division and remainder:ldiv and lrem .

• Class initialization: init .

• Instance and array instantiation:newinstance and newarray .

• Synchronization primitives:lock , unlock and islocked .

• Type testing: subtypeof and comptypeof .

• Interface method lookup:imlookup .

• Native method call:ncalll , ncallz , ncallb , ncallc , ncalls , ncalli ,
ncallj , ncallf , ncalld and ncallv .

In our current implementation, the static heap image is generated in a data segment and, at
run-time, its contents are modified as the machine executes. This means that only a single JVM
instance can be created in the context of a process, providing a limited implementation of the
JNI CreateJavaVM JNI call1. A workaround to this limitation can be done using dynamic
mapping of process segments by copying the original heap layout from the executable binary
to a different memory location every time a JVM is created. For platforms that do not support
dynamic segment mapping, this could be done explicitly by the application. In both cases,
some patching is required to update the runtime callback addresses.

10.2 Machine Generation Configurations

The automatic machine generation is a configuration driven process. The machine generator
executes and produces a static heap image based on a input configuration file. The configura-
tion file defines the behavior of the machine to be generated by providing information about
the classes to be off-line embedded in it.

A machine generation configuration comprises the following information:

1This is a common limitation in most JVM implementations including Sun’s reference implementation.

MACHINE GENERATOR FUNCTIONALITY 143

• The path list from where class files will be read during the generation process (usually
referenced to asCLASSPATH).

• The name of the classes to be embedded into the static heap image. In addition each
class has two attributes:

1. An attribute indicating if the class must be linked off-line.

2. An attribute indicating if meta class information must be included beforehand.

In a configuration file, the list of classes can partitioned into two sets:behavior defining
classesanddependent classes. Behavior defining classes are classes that implement a particu-
lar JVM operation following some desired strategy or algorithm. Dependent classes are more
generic classes used by behavior defining classes to complete or help in their implementation.
Since some Java implemented extensions of the runtime must be promptly available upon
machine startup, some dependent classes — in conjunction with behavior defining classes —
need to be embedded avoiding chicken-egg problems (e.g. linking a class that is part of class
linkage implementation).

However, the detection of the minimum set of dependent classes required to bootstrap the
machine is a difficult task. It is difficult because we have to find the closure set of the methods
reachable from all methods directly called by the runtime during bootstrap. We do that in order
to ensure that all execution paths required to bootstrap the machine are already present in the
binary executable before the bootstrap (otherwise the machine shuts down unpredictably). Ac-
tually, the difficulty is not in finding the whole closure set, which can be done conservatively,
but in finding a subset of the closure set that is an approximate superset of the minimum set of
methods possibly executed during bootstrap. Automatic conservative detection of bootstrap
dependencies generates a huge static heap image. This has impact in the amount of memory
consumed by the JVM2, sometimes wasted by the storage of classes linked beforehand and
never used.

In our configurations, we have decided to detect bootstrap dependencies by hand. This
task is repetitive and time-consuming but, once the core libraries basic structure is kept, it
will need few revisions. As foreseen in our design (see Chapter 3), we have written two ma-
chine generation configurations: the Thin-Client Client JVM configuration and the Standalone
Client JVM configuration.

10.3 Machine Generator Functionality

The machine generator is a tool that uses a configuration to generate a static heap image to be
incorporated by the runtime. The tool is very simple, it simulates the bootstrap loading and
linking activities of the JVM using a simulated heap; when all classes in the configuration are
processed, it uses the target back-end to produce an assembly output.

The simulation of the JVM bootstrap is very simple. Reading classes from the CLASS-
PATH provided in the configuration file, it allocates storage in the simulated heap for each
meta class being loaded, their method texts, string literals and associated arrays of chars.

2It also has a strong impact in the machine generation time. Luckly, machines are generated once.

144 AUTOMATIC MACHINE GENERATION

Two tables play an important role in machine generation process: thebootstrap class
loader tableand thestring intern set table. The former table records the classes already
loaded during generation. The latter table is a map between string literals and simulated heap
allocated string instances, avoiding the occurrence of duplicate string instances associated
with the same string literal. Both tables are implemented internally by the generator — and
not allocated in the simulated heap — even though they will be instantiated and initialized as
soon as possible during the machine bootstrap. They cannot be allocated into the simulated
heap because their initialization requires calling their methods and bytecode interpretation
is not supported during machine generation (we foresee bytecode interpretation as part of
the future improvements to the generator, most of its complexity is due to native methods
existence).

The internal representation of the simulated heap is symbolic. Instead of actually reserving
storage for class instances, we retain the size required for each object in the heap. Meta class
and method text instances have extra internal fields that store information about their link state
and binary translation, respectively. This extra information is exactly the extra information
stored in the instance headers or extended bodies as described in Chapter 8.

All the generation process is done through a Server JVM used to register, load, link and
translate class files. Linkage errors during generation make the generator abort with a detailed
message.

10.4 Heap Initialization Procedure

The heap initialization procedure, that must be done by the runtime during machine creation,
is fairly simple. The initialization consists of a heap traversal executing one of three actions:

Construct and Load Class Meta class instance constructor (seeClass()) is executed and
the class is recorded to be loaded by the bootstrap class loader. Usually the meta class
constructor does nothing but return, if the case, may be omitted.

Construct Method Text Method text instance constructor (seeMethodText()) is exe-
cuted. Usually the method text constructor does nothing but return, if the case, may
be omitted.

Construct and Internalize String String literal constructor is executed using the subsequent
array of chars as parameter (seeString(char[])), afterwards the string is internal-
ized (seeString.intern()).

Chapter 11

Conclusions

This document has described an alternate implementation of the Java Virtual Machine. The
most important feature of that implementation is its ability to externally hoist and cache link-
time activities (specially JIT compilation) on a network based computer. It improves the
performance of JIT produced code, decreases runtime overheads, and makes better use of
hardware resources. The explanation goes beyond the solutions proposed to implement this
innovative approach. It comprises:

• Techniques for detecting and caching repetitive link-time contexts.

• An alternate, off-line, bytecode verification procedure.

• The design and implementation of a Java specific intermediate representation. Its con-
version from Java bytecodes, the manipulation tool, some analyses and transformation
algorithms.

• A simple unified back-end for the Intel family of 32-bit processors.

• Runtime data organization on heap and thread stack. Including support for full-fledged
stack traces on optimized compiled code.

• Accurate garbage collection requirements and implementation issues.

• Off-line embedding of core libraries in the virtual machine runtime.

There were two important simplification problems in our work. However, we noticed that
they can be solved without significant impact on the overall system design. The alternatives,
in both cases, speed up execution and save memory.

The first problem regardslazy resolution. In an early specification, we decided to adopt
eager resolutionin our preliminary implementation, as allowed by the JVM specification.
Eager resolution is the premature resolution, at link-time, of classes, fields, and methods sym-
bolically referenced by a class. On the other hand, lazy resolution states that those symbolic
entities need only to be resolved on their first use during execution. We indeed verified that,
using eager resolution, a large amount of link-time activities tends to concentrate on applica-
tions startup. Eager resolution generates a startup delay that should be avoided on short-lived

145

146 CONCLUSIONS

applications. The solution to this problem can be achieved by extending the IR to support lazy
resolution operations. By adopting lazy resolution, context classes need not to be loaded on
the LINK phase, saving memory.

The second problem regardsmethod compilation. According to what has been described,
all class methods are converted to IR during the LINK phase. In a similar manner, all methods
are translated to machine code during the TRANSLATE phase. That means client JVMs have
to wait for the compilation of all methods even if they need to execute just some of them. This
batch compilation scheme introduces delay on link-time operations. The solution to this prob-
lem is tricky. Instead of using the compiled version of methods to initialize dispatch tables,
the runtime uses synthetic versions. Each synthetic version is responsible for, synchronizedly,
replacing itself by the actual version of the method. The TRANSLATE phase must then be
modified to handle requests on a method granularity. Synthetic methods are usually smaller
and save memory.

Due to time constraints, we have not implemented a mid-level optimizer. It is a key com-
ponent of the system and is part of the future work.

Despite these problems, we have successfully met our goals. The prototype has been used
to run real-world applications and benchmarks. It still lacks profiling and tuning but, as a
first implementation, it exhibited surprisingly good performance. At least, it outstripped the
interpreted implementation performance for many standard vendors.

Appendix A

Intermediate Representation Specification

The intermediate representation, for shortIR, consists of a set ofIR opcodes. An IR opcode
defines a simple but semantically clear operation. Each IR opcode may have arguments, at-
tributes and optionally provide a result. The arguments of an IR opcode are actually the result
of other IR opcodes coupled to it. The attributes of an IR opcode extend its semantics. IR
opcodes that provide a result are used as arguments by others. IR opcodes that do not provide
a result defineIR statements. An IR programis the sequence of IR statements that implements
a particular Java method. This appendix gives details about the syntax of each IR opcode and
the semantics of the operation it performs.

A.1 Grammar

The following IR Grammardefines syntatically how IR opcodes can be coupled to form an
IR statement. An IR program is a sequence of IR statements and a virtually infinite set of
registers. The IR is typed, which means that IR opcodes can only couple to and work with
entities of the expected type.

The IR supports five types: signed 32-bit integers, signed 64-bit long integers, floats, dou-
bles and object references. Floats and doubles are encoded and handled as the 32-bit and 64-
bit IEEE standards. Whence on registers, those types may have an extended exponent[LY99,
§3.3.2] which is a choice of interpretation. However, at some points, those extended values
may need to be mapped to non-extended values (fstrict , dstrict). The reference type
does not demand an encoding and is left unspecified.

The IR opcodes are partitioned into six sets, one for each type described above and one
associated with IR statements. Each opcode may provide a result, and thus it may be classified
according to the type of the result. If the opcode does not provide a result then it defines an IR
statement.

Each IR statement is a tree. The root of the tree must be an opcode that does not provide
a result and is represented in the IR Grammar by theS non-terminal. The rest of the tree is
obtained by applying the rules present in the IR Grammar to the arguments of the root opcode.
This happens until no more arguments are left for expansion.

The IR Grammar defines only part of the constraints which the IR is required to obey,

147

148 INTERMEDIATE REPRESENTATION SPECIFICATION

precisely those constraints that could be captured by syntax. Constraints regarding the IR
semantics are exposed on next section when each opcode is revisited.

Syntax Page

S: ireceive (%i) 171
S: lreceive (%l) 178
S: freceive (%f) 164
S: dreceive (%d) 159
S: areceive (%a, #c) 152

S: ipass (I) 171
S: lpass (L) 178
S: fpass (F) 164
S: dpass (D) 159
S: apass (A) 151

S: call (A, #t) 155
S: callx (A, #t , @l) 156

S: ncall (#c , #s , #t) 180
S: ncallx (#c , #s , #t , @l) 181

S: iresult (%i) 171
S: lresult (%l) 178
S: fresult (%f) 165
S: dresult (%d) 160
S: aresult (%a, #c) 152

S: label (@l) 174
S: jump (@l) 174
S: ajump (#x , A, A, @l) 151
S: ijump (#x , I , I , @l) 168
S: iswitch (I ,[$i , @l]...) 173

S: acatch (%a) 150
S: athrow (A) 153

S: ireturn (I) 172
S: lreturn (L) 179
S: freturn (F) 165
S: dreturn (D) 160
S: areturn (A) 152
S: vreturn () 185

S: idefine (%i , I) 168
S: ldefine (%l , L) 176
S: fdefine (%f, F) 163
S: ddefine (%d, D) 158

GRAMMAR 149

S: adefine (%a, A) 150

S: bstore (A, #o , #v , I) 155
S: sstore (A, #o , #v , I) 185
S: istore (A, #o , #v , I) 172
S: lstore (A, #o , #v , L) 179
S: fstore (A, #o , #v , F) 165
S: dstore (A, #o , #v , D) 160
S: astore (A, #o , #v , A) 153

S: bastore (A, I , I) 154
S: sastore (A, I , I) 184
S: iastore (A, I , I) 168
S: lastore (A, I , L) 175
S: fastore (A, I , F) 162
S: dastore (A, I , D) 157
S: aastore (A, I , A) 150

S: init (A, #t) 170
S: initx (A, #t , @l) 170

S: newinstance (A, #t) 183
S: newinstancex (A, #t , @l) 183
S: newarray (A, I , #t) 182
S: newarrayx (A, I , #t , @l) 182

S: lock (A, #t) 177
S: lockx (A, #t , @l) 177
S: unlock (A) 185
S: readbarrier () 183
S: writebarrier () 186

A: getclass (A) 166
A: aload (A, #o , #v , #c) 151
A: aaload (A, I) 149
A: mlookup (A, #i) 180
A: imlookup (A, A, #i) 169
A: ause (%a) 154
A: anull () 151
A: aclass ($c) 150
A: astring ($s) 153

I : i2b (I) 166
I : i2c (I) 166
I : i2s (I) 167
I : l2i (L) 174
I : f2i (F) 161
I : d2i (D) 156

150 INTERMEDIATE REPRESENTATION SPECIFICATION

I : iadd (I , I) 167
I : isub (I , I) 173
I : imul (I , I) 169
I : idiv (I , I) 168
I : irem (I , I) 171
I : ineg (I) 170
I : ishl (I , I) 172
I : ishr (I , I) 172
I : iushr (I , I) 173
I : iand (I , I) 168
I : ior (I , I) 170
I : ixor (I , I) 173
I : lcmp (L , L) 175
I : fcmpg (F , F) 162
I : fcmpl (F , F) 163
I : dcmpg(D, D) 158
I : dcmpl (D, D) 158
I : length (A) 176
I : bload (A, #o , #v) 154
I : sload (A, #o , #v) 184
I : iload (A, #o , #v) 169
I : baload (A, I) 154
I : saload (A, I) 184
I : iaload (A, I) 167
I : islocked (A) 172
I : subtypeof (A, A) 185
I : comptypeof (A, A) 156
I : iuse (%i) 173
I : iconst ($i) 168

L : i2l (I) 167
L : f2l (F) 162
L : d2l (D) 157
L : ladd (L , L) 174
L : lsub (L , L) 180
L : lmul (L , L) 176
L : ldiv (L , L) 176
L : lrem (L , L) 178
L : lneg (L) 177
L : lshl (L , I) 179
L : lshr (L , I) 179
L : lushr (L , I) 180
L : land (L , L) 175
L : lor (L , L) 178

OPCODES 151

L : lxor (L , L) 180
L : lload (A, #o , #v) 176
L : laload (A, I) 175
L : luse (%l) 180
L : lconst ($l) 175

F : i2f (I) 167
F : l2f (L) 174
F : d2f (D) 157
F : fstrict (F) 165
F : fadd (F , F) 162
F : fsub (F , F) 166
F : fmul (F , F) 164
F : fdiv (F , F) 163
F : frem (F , F) 165
F : fneg (F) 164
F : fload (A, #o , #v) 163
F : faload (A, I) 162
F : fuse (%f) 166
F : fconst ($f) 162

D: i2d (I) 167
D: l2d (L) 174
D: f2d (F) 161
D: dstrict (D) 161
D: dadd (D, D) 157
D: dsub (D, D) 161
D: dmul (D, D) 159
D: ddiv (D, D) 158
D: drem (D, D) 160
D: dneg (D) 159
D: dload (A, #o , #v) 159
D: daload (A, I) 157
D: duse (%d) 161
D: dconst ($d) 158

A.2 Opcodes

aaload

Operation Load reference from array

Syntax A: aaload (A, I)

152 INTERMEDIATE REPRESENTATION SPECIFICATION

Description The aaload opcode reads a reference from arrayA at indexI . A must be a
non-null reference to a reference array instance.I must be non-negative and
less thanA length.

Class memory-accessing

aastore

Operation Store into reference array

Syntax S: aastore (A1, I , A2)

Description Theaastore opcode writes a referenceA2 into arrayA1 at indexI . A1 must
be a non-null reference to a reference array instance.I must be non-negative
and less thanA1 length.A2 must be a subtype ofA1 component type.

Class memory-accessing

acatch

Operation Catch exception

Syntax S: acatch (%a)

Description Theacatch opcode defines an exception handler entry point in an IR program.
It stores a non-null reference to the exception thrown in register%a.

Notes Theacatch is only reachable byexception-proneopcodes:callx , ncallx ,
initx , newinstancex , newarrayx andlockx .

Theacatch opcode simply defines a unified exception handler entry point for
a set ofexception-proneopcodes. The check for exception subtyping and dele-
gation to appropriate handler is responsibility of the code following it.

aclass

Operation Provide class reference

Syntax A: aclass ($c)

Description Theaclass opcode provides the reference for theClass instance associated
to type$c .

The type$c is represented by the name of a class or interface in itsextended
fully-qualified internalform (Section 4.3.1).

OPCODES 153

adefine

Operation Write reference register

Syntax S: adefine (%a, A)

Description Theadefine opcode stores the value of expressionA in register%a.

ajump

Operation Transfer control if reference comparison succeeds

Syntax S: ajump (#x , A1, A2, @l)

Description Theajump opcode transfers execution to label@l if the comparison ofA1 and
A2 succeeds.

The attribute#x defines the behavior of theajump opcode in the following
way:

#x TRANSFER CONTROL IF

EQ A1 = A2

NE A1 6= A2

aload

Operation Load reference from field

Syntax A: aload (A, #o , #v , #c)

Description The aload opcode reads a reference field fromA at offset#o . A must be a
non-null reference.

The attribute#o specifies the reference field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

The attribute#c is the type of the reference provided byaload . It is repre-
sented by the name of a class or interface in itsextended fully-qualified internal
form (Section 4.3.1).

Class memory-accessing

154 INTERMEDIATE REPRESENTATION SPECIFICATION

anull

Operation Provide null reference

Syntax A: anull ()

Description Theanull opcode provides a null object reference.

apass

Operation Pass reference as parameter to method call

Syntax S: apass (A)

Description Theapass opcode passes a referenceA as parameter to a subsequent method
call.

Class parameter-passing

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

areceive

Operation Write method parameter to reference register

Syntax S: areceive (%a, #c)

Description The areceive opcode stores the parameter received by a method, upon its
call, in reference register%a.

The reference written to reference register%apoints to an object of type#c
or one of its subtypes. The type#c is represented by the name of a class or
interface in itsextended fully-qualified internalform (Section 4.3.1).

Class parameter-receiving

Notes Parameter-receivingopcodes must appear on top of IR programs, before all
other opcodes. They must be placed according to the method signature inleft-
to-right order.

OPCODES 155

aresult

Operation Write method result to reference register

Syntax S: aresult (%a, #c)

Description Thearesult opcode stores the result of a method call in reference register%a.
It must appear just after the method call opcode and be used only when calling
reference methods.

The reference written to reference register%apoints to an object of type#c
or one of its subtypes. The type#c is represented by the name of a class or
interface in itsextended fully-qualified internalform (Section 4.3.1).

Class result-saving

Notes Thearesult opcode is also used aftermemory-allocationopcodes to store the
reference to the newly allocated object in a reference register.

areturn

Operation Return from reference method

Syntax S: areturn (A)

Description Theareturn opcode returns from the current executing method. The current
executing method must be a reference method. The value of expressionA is used
as the return value.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

astore

Operation Store into reference field

Syntax S: astore (A1, #o , #v , A2)

Description Theastore opcode writesA2 into a reference field ofA1 at offset#o . A1 must
be a non-null reference.

The attribute#o specifies the reference field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

156 INTERMEDIATE REPRESENTATION SPECIFICATION

astring

Operation Provide string reference

Syntax A: astring ($s)

Description Theastring opcode provides the reference for theString instance result of
$s internalization.$s is any Java string literal.

athrow

Operation Throw exception

Syntax S: athrow (A)

Description Theathrow opcode throws an exception in the frame of the caller method. The
expressionA must evaluate to a non-null reference.

Notes Theathrow opcode is used only when throwing or rethrowing exceptions out-
side the current frame. Theathrow opcode is not used when throwing excep-
tions in code protected by the current frame. In this case, the exception handling
is done explicitly by transfering the control to the appropriate handler.

ause

Operation Read reference register

Syntax A: ause (%a)

Description Theause opcode loads the value of register%a.

baload

Operation Load boolean or byte from array

Syntax I : baload (A, I)

Description Thebaload opcode reads the lower 8 bits of integer from arrayA at indexI .
A must be a non-null reference to a boolean or byte array instance.I must be
non-negative and less thanA length. The higher 24 bits of the integer provided
by baload are left unspecified.

Class memory-accessing

Notes Booleans are coded as integers. Non-zero integers when treated as booleans
havetrue semantics, otherwise they havefalse semantics.

OPCODES 157

bastore

Operation Store into boolean or byte array

Syntax S: bastore (A, I 1, I 2)

Description Thebastore opcode writes the lower 8 bits of integerI 2 into arrayA at index
I 1. A must be a non-null reference to a boolean or byte array instance.I 1 must
be non-negative and less thanA length.

Class memory-accessing

Notes Booleans are coded as integers. Non-zero integers when treated as booleans
havetrue semantics, otherwise they havefalse semantics.

bload

Operation Load boolean or byte from field

Syntax I : bload (A, #o , #v)

Description The bload opcode reads the lower 8 bits of the integer from boolean or byte
field of A at offset#o . A must be a non-null reference. The higher 24 bits of
integer provided bybload are left unspecified.

The attribute#o specifies the boolean or byte field offset using the encoding
described on Section 4.4. It also tells, using a boolean flag, which of the static
or instance field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

Notes Booleans are coded as integers. Non-zero integers when treated as booleans
havetrue semantics, otherwise they havefalse semantics.

bstore

Operation Store into boolean or byte field

Syntax S: bstore (A, #o , #v , I)

Description Thebstore opcode writes the lower 8 bits of integerI into a boolean or byte
field of A at offset#o . A must be a non-null reference.

The attribute#o specifies the boolean or byte field offset using the encoding
described on Section 4.4. It also tells, using a boolean flag, which of the static
or instance field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

158 INTERMEDIATE REPRESENTATION SPECIFICATION

Class memory-accessing

Notes Booleans are coded as integers. Non-zero integers when treated as booleans
havetrue semantics, otherwise they havefalse semantics.

call

Operation Call method

Syntax S: call (A, #t)

Description The call opcode calls methodA. A must evaluate to a non-null reference of
classMethodText . The parameters to the call are passed before this opcode
using parameter-passingopcodes. If the callee method is not void, aresult-
savingopcode may be used just after thecall opcode to store the result in a
register.

The attribute#t contains information regarding stack inspection and tracing.

Class method-call, inspection-point

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

The type of theresult-savingopcode must match the type of the method being
called.

This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

callx

Operation Call method, handle failure

Syntax S: callx (A, #t , @l)

Description Thecallx opcode calls methodA. A must evaluate to a non-null reference of
classMethodText . The parameters to the call are passed before this opcode
using parameter-passingopcodes. If the callee method is not void, aresult-
savingopcode may be used just after thecallx opcode to store the result in a
register.

The attribute#t contains information regarding stack inspection and tracing.

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

OPCODES 159

Class method-call, inspection-point, exception-prone

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

The type of theresult-savingopcode must match the type of the method being
called.

comptypeof

Operation Determine array component subtyping

Syntax I : comptypeof (A1, A2)

Description The comptypeof opcode checks if class or interfaceA1 is a subtype of the
component type of array classA2. Both expressions must evaluate to non-null
references of classClass .

d2i

Operation Convert double to integer

Syntax I : d2i (D)

Description Thed2i opcode converts the double expressionD to integer.

d2f

Operation Convert double to float

Syntax F : d2f (D)

Description Thed2f opcode converts the double expressionD to float.

d2l

Operation Convert double to long integer

Syntax L : d2l (D)

Description Thed2l opcode converts the double expressionD to long integer.

160 INTERMEDIATE REPRESENTATION SPECIFICATION

dadd

Operation Add doubles

Syntax D: dadd (D1, D2)

Description Thedadd opcode provides the result of additionD1 + D2.

daload

Operation Load double from array

Syntax D: daload (A, I)

Description Thedaload opcode reads a double from arrayA at indexI . A must be a non-
null reference to a double array instance.I must be non-negative and less than
A length.

Class memory-accessing

dastore

Operation Store into double array

Syntax S: dastore (A, I , D)

Description Thedastore opcode writes a doubleD into arrayA at indexI . A must be a
non-null reference to a double array instance.I must be non-negative and less
thanA length.

Class memory-accessing

dcmpg

Operation Compare doubles

Syntax I : dcmpg(D1, D2)

Description Thedcmpg opcode compares doublesD1 andD2. If D1 < D2, a negative integer
value is provided. IfD1 = D2, the integer value0 is provided. IfD1 > D2, a
positive integer value is provided. If at least one ofD1 or D2 is NaN, a positive
integer value is provided.

Notes Thedcmpg anddcmpl instructions differ only when treatingNaN.

OPCODES 161

dcmpl

Operation Compare doubles

Syntax I : dcmpl (D1, D2)

Description Thedcmpl opcode compares doublesD1 andD2. If D1 < D2, a negative integer
value is provided. IfD1 = D2, the integer value0 is provided. IfD1 > D2, a
positive integer value is provided. If at least one ofD1 or D2 is NaN, a negative
integer value is provided.

Notes Thedcmpg anddcmpl instructions differ only when treatingNaN.

dconst

Operation Provide double constant

Syntax D: dconst ($d)

Description Thedconst opcode provides the double constant$d .

ddefine

Operation Write double register

Syntax S: ddefine (%d, D)

Description Theddefine opcode stores the value of expressionD in register%d.

ddiv

Operation Divide doubles

Syntax D: ddiv (D1, D2)

Description Theddiv opcode provides the result of divisionD1/D2.

dload

Operation Load double from field

Syntax D: dload (A, #o , #v)

Description Thedload opcode reads a double field fromA at offset#o . A must be a non-
null reference.

The attribute#o specifies the double field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

162 INTERMEDIATE REPRESENTATION SPECIFICATION

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

dmul

Operation Multiply doubles

Syntax D: dmul (D1, D2)

Description Thedmul opcode provides the result of multiplicationD1 ∗ D2.

dneg

Operation Negate double

Syntax D: dneg (D)

Description Thedneg opcode provides the result of negation−D.

dpass

Operation Pass double as parameter to method call

Syntax S: dpass (D)

Description Thedpass opcode passes a doubleD as parameter to a subsequent method call.

Class parameter-passing

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

dreceive

Operation Write method parameter to double register

Syntax S: dreceive (%d)

Description The dreceive opcode stores the parameter received by a method, upon its
call, in double register%d.

Class parameter-receiving

OPCODES 163

Notes Parameter-receivingopcodes must appear on top of IR programs, before all
other opcodes. They must be placed according to the method signature inleft-
to-right order.

drem

Operation Remainder doubles

Syntax D: drem (D1, D2)

Description Thedrem opcode provides the result of remainderD1%D2.

dresult

Operation Write method result to double register

Syntax S: dresult (%d)

Description Thedresult opcode stores the result of a method call in double register%d.
It must appear just after the method call opcode and be used only when calling
double methods.

Class result-saving

dreturn

Operation Return from double method

Syntax S: dreturn (D)

Description Thedreturn opcode returns from the current executing method. The current
executing method must be a double method. The value of expressionD is used
as the return value.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

dstore

Operation Store into double field

Syntax S: dstore (A, #o , #v , D)

164 INTERMEDIATE REPRESENTATION SPECIFICATION

Description Thedstore opcode writesD into a double field ofA at offset#o . A must be a
non-null reference.

The attribute#o specifies the double field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

dstrict

Operation Convert to double value set

Syntax D: dstrict (D)

Description Thedstrict opcode provides the nearest element of thedouble value setrep-
resenting thedouble-extended-exponent value setelementD. Thevalue set con-
versionprocedure is described on [LY99,§2.6.6].

dsub

Operation Subtract doubles

Syntax D: dsub (D1, D2)

Description Thedsub opcode provides the result of subtractionD1 − D2.

duse

Operation Read double register

Syntax D: duse (%d)

Description Theduse opcode loads the value of register%d.

f2d

Operation Convert float to double

Syntax D: f2d (F)

Description Thef2d opcode converts the float expressionF to double.

OPCODES 165

f2i

Operation Convert float to integer

Syntax I : f2i (F)

Description Thef2i opcode converts the float expressionF to integer.

f2l

Operation Convert float to long integer

Syntax L : f2l (F)

Description Thef2l opcode converts the float expressionF to long integer.

fadd

Operation Add floats

Syntax F : fadd (F1, F2)

Description Thefadd opcode provides the result of additionF1 + F2.

faload

Operation Load float from array

Syntax F : faload (A, I)

Description The faload opcode reads a float from arrayA at indexI . A must be a non-
null reference to a float array instance.I must be non-negative and less thanA
length.

Class memory-accessing

fastore

Operation Store into float array

Syntax S: fastore (A, I , F)

Description Thefastore opcode writes a floatF into arrayA at indexI . A must be a non-
null reference to a float array instance.I must be non-negative and less thanA
length.

Class memory-accessing

166 INTERMEDIATE REPRESENTATION SPECIFICATION

fconst

Operation Provide float constant

Syntax F : fconst ($f)

Description Thefconst opcode provides the float constant$f .

fcmpg

Operation Compare floats

Syntax I : fcmpg (F1, F2)

Description The fcmpg opcode compares floatsF1 andF2. If F1 < F2, a negative integer
value is provided. IfF1 = F2, the integer value0 is provided. IfF1 > F2, a
positive integer value is provided. If at least one ofF1 or F2 is NaN, a positive
integer value is provided.

Notes Thefcmpg andfcmpl instructions differ only when treatingNaN.

fcmpl

Operation Compare floats

Syntax I : fcmpl (F1, F2)

Description The fcmpl opcode compares floatsF1 andF2. If F1 < F2, a negative integer
value is provided. IfF1 = F2, the integer value0 is provided. IfF1 > F2, a
positive integer value is provided. If at least one ofF1 or F2 is NaN, a negative
integer value is provided.

Notes Thefcmpg andfcmpl instructions differ only when treatingNaN.

fdefine

Operation Write float register

Syntax S: fdefine (%f, F)

Description Thefdefine opcode stores the value of expressionF in register%f.

fdiv

Operation Divide floats

Syntax F : fdiv (F1, F2)

Description Thefdiv opcode provides the result of divisionF1/F2.

OPCODES 167

fload

Operation Load float from field

Syntax F : fload (A, #o , #v)

Description Thefload opcode reads a float field fromA at offset#o . A must be a non-null
reference.

The attribute#o specifies the float field offset using the encoding described on
Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

fmul

Operation Multiply floats

Syntax F : fmul (F1, F2)

Description Thefmul opcode provides the result of multiplicationF1 ∗ F2.

fneg

Operation Negate float

Syntax F : fneg (F)

Description Thefneg opcode provides the result of negation−F .

fpass

Operation Pass float as parameter to method call

Syntax S: fpass (F)

Description Thefpass opcode passes a floatF as parameter to a subsequent method call.

Class parameter-passing

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

168 INTERMEDIATE REPRESENTATION SPECIFICATION

freceive

Operation Write method parameter to float register

Syntax S: freceive (%f)

Description The freceive opcode stores the parameter received by a method, upon its
call, in float register%f.

Class parameter-receiving

Notes Parameter-receivingopcodes must appear on top of IR programs, before all
other opcodes. They must be placed according to the method signature inleft-
to-right order.

frem

Operation Remainder floats

Syntax F : frem (F1, F2)

Description Thefrem opcode provides the result of remainderF1%F2.

fresult

Operation Write method result to float register

Syntax S: fresult (%f)

Description The fresult opcode stores the result of a method call in float register%f. It
must appear just after the method call opcode and be used only when calling
float methods.

Class result-saving

freturn

Operation Return from float method

Syntax S: freturn (F)

Description The freturn opcode returns from the current executing method. The current
executing method must be a float method. The value of expressionF is used as
the return value.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

OPCODES 169

fstore

Operation Store into float field

Syntax S: fstore (A, #o , #v , F)

Description The fstore opcode writesF into a float field ofA at offset#o . A must be a
non-null reference.

The attribute#o specifies the float field offset using the encoding described on
Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

fstrict

Operation Convert to float value set

Syntax F : fstrict (F)

Description The fstrict opcode provides the nearest element of thefloat value setrepre-
senting thefloat-extended-exponent value setelementF . Thevalue set conver-
sionprocedure is described on [LY99,§2.6.6].

fsub

Operation Subtract floats

Syntax F : fsub (F1, F2)

Description Thefsub opcode provides the result of subtractionF1 − F2.

fuse

Operation Read float register

Syntax F : fuse (%f)

Description Thefuse opcode loads the value of register%f.

170 INTERMEDIATE REPRESENTATION SPECIFICATION

getclass

Operation Get object class

Syntax A: getclass (A)

Description Thegetclass opcode provides a reference to aClass instance representing
the class ofA. A expression must evaluate to a non-null reference.

Notes Thegetclass opcode may be handled as if it were an arithmetic expression.
It does not have side effects and will always provide the same value once its
argument is fixed.

i2b

Operation Convert integer to byte

Syntax I : i2b (I)

Description The i2b converts the integer expressionI to byte. The integer value provided
by i2b is the result of sign-extendingI lower 8 bits.

i2c

Operation Convert integer to char

Syntax I : i2c (I)

Description The i2c converts the integer expressionI to char. The integer value provided
by i2c is the result of zero-extendingI lower 16 bits.

i2d

Operation Convert integer to double

Syntax D: i2d (I)

Description The i2d opcode converts the integer expressionI to double.

i2f

Operation Convert integer to float

Syntax F : i2f (I)

Description The i2f opcode converts the integer expressionI to float.

OPCODES 171

i2l

Operation Convert integer to long integer

Syntax L : i2l (I)

Description The i2l opcode converts the integer expressionI to long integer.

i2s

Operation Convert integer to short

Syntax I : i2s (I)

Description The i2s converts the integer expressionI to short. The integer value provided
by i2s is the result of sign-extendingI lower 16 bits.

iadd

Operation Add integers

Syntax I : iadd (I 1, I 2)

Description The iadd opcode provides the result of additionI 1 + I 2.

iaload

Operation Load integer from array

Syntax I : iaload (A, I)

Description The iaload opcode reads an integer from arrayA at indexI . A must be a
non-null reference to a integer array instance.I must be non-negative and less
thanA length.

Class memory-accessing

iand

Operation Bitwise and integers

Syntax I : iand (I 1, I 2)

Description The iand opcode provides the result of operationI 1&I 2.

172 INTERMEDIATE REPRESENTATION SPECIFICATION

iastore

Operation Store into integer array

Syntax S: iastore (A, I 1, I 2)

Description Theiastore opcode writes an integerI 2 into arrayA at indexI 1. A must be a
non-null reference to a integer array instance.I 1 must be non-negative and less
thanA length.

Class memory-accessing

iconst

Operation Provide integer constant

Syntax I : iconst ($i)

Description The iconst opcode provides the integer constant$i .

idefine

Operation Write integer register

Syntax S: idefine (%i , I)

Description The idefine opcode stores the value of expressionI in register%i .

idiv

Operation Divide integers

Syntax I : idiv (I 1, I 2)

Description The idiv opcode provides the result of divisionI 1/I 2. I 2 must be non-zero.

ijump

Operation Transfer control if integer comparison succeeds

Syntax S: ijump (#x , I 1, I 2, @l)

Description The ijump opcode transfers execution to label@l if the comparison ofI 1 and
I 2 succeeds.

The attribute#x defines the behavior of theijump opcode in the following
way:

OPCODES 173

#x TRANSFER CONTROL IF

EQ I 1 = I 2

NE I 1 6= I 2

LT I 1 < I 2

LE I 1 ≤ I 2

GE I 1 ≥ I 2

GT I 1 > I 2

B I 1 <(unsigned) I 2

BE I 1 ≤(unsigned) I 2

AE I 1 ≥(unsigned) I 2

A I 1 >(unsigned) I 2

iload

Operation Load integer from field

Syntax I : iload (A, #o , #v)

Description The iload opcode reads an integer field fromA at offset#o . A must be a
non-null reference.

The attribute#o specifies the integer field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

imlookup

Operation Search for interface method

Syntax A: imlookup (A1, A2, #i)

Description The imlookup provides the method at dispatch table index#i , from base off-
set of interfaceA2, of classA1. Both the expressionsA1 andA2 must evaluate to
non-null references of classClass . Theimlookup provides a non-null refer-
ence of classMethodText if classA1 implements interfaceA2. Otherwise, the
null reference is provided.

Notes The imlookup opcode may be handled as if it were an arithmetic expression.
It does not have side effects and will always provide the same value once its
arguments and attribute are fixed.

174 INTERMEDIATE REPRESENTATION SPECIFICATION

imul

Operation Multiply integers

Syntax I : imul (I 1, I 2)

Description The imul opcode provides the result of multiplicationI 1 ∗ I 2.

ineg

Operation Negate integer

Syntax I : ineg (I)

Description The ineg opcode provides the result of negation−I .

init

Operation Initialize class

Syntax S: init (A, #t)

Description The init opcode triggers the initialization procedure ([LY99,§2.17.5]) for
classA. The expressionA must evaluate to a non-null reference of an instance
of classClass .

The attribute#t contains information regarding stack inspection and tracing.

Class inspection-point

Notes This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

initx

Operation Initialize class, handle failure

Syntax S: initx (A, #t , @l)

Description The initx opcode triggers the initialization procedure ([LY99,§2.17.5]) for
classA. The expressionA must evaluate to a non-null reference of an instance
of classClass .

The attribute#t contains information regarding stack inspection and tracing.

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

Class inspection-point, exception-prone

OPCODES 175

ior

Operation Bitwise or integers

Syntax I : ior (I 1, I 2)

Description The ior opcode provides the result of operationI 1|I 2.

ipass

Operation Pass integer as parameter to method call

Syntax S: ipass (I)

Description The ipass opcode passes an integerI as parameter to a subsequent method
call.

Class parameter-passing

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

ireceive

Operation Write method parameter to integer register

Syntax S: ireceive (%i)

Description The ireceive opcode stores the parameter received by a method, upon its
call, in integer register%i .

Class parameter-receiving

Notes Parameter-receivingopcodes must appear on top of IR programs, before all
other opcodes. They must be placed according to the method signature inleft-
to-right order.

irem

Operation Remainder integers

Syntax I : irem (I 1, I 2)

Description Theirem opcode provides the result of remainderI 1%I 2. I 2 must be non-zero.

176 INTERMEDIATE REPRESENTATION SPECIFICATION

iresult

Operation Write method result to integer register

Syntax S: iresult (%i)

Description The iresult opcode stores the result of a method call in integer register%i .
It must appear just after the method call opcode and be used only when calling
integer methods.

Class result-saving

ireturn

Operation Return from integer method

Syntax S: ireturn (I)

Description The ireturn opcode returns from the current executing method. The current
executing method must be an integer method. The value of expressionI is used
as the return value.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

ishl

Operation Shift left integer

Syntax I : ishl (I 1, I 2)

Description The ishl opcode provides the result of operationI 1 << I 2.

ishr

Operation Arithmetic shift right integer

Syntax I : ishr (I 1, I 2)

Description The ishr opcode provides the result of operationI 1 >> I 2.

OPCODES 177

islocked

Operation Determine if lock is acquired

Syntax I : islocked (A)

Description The islocked opcode determines if the lock for objectA has been acquired
by thecurrent thread. The expressionA must evaluate to a non-null reference. If
the lock has been acquired theislocked opcode provides a non-zero integer
value. Otherwise, it provides the integer0 value.

istore

Operation Store into integer field

Syntax S: istore (A, #o , #v , I)

Description The istore opcode writesI into an integer field ofA at offset#o . A must be
a non-null reference.

The attribute#o specifies the integer field offset using the encoding described
on Section 4.4. It also tells, using a boolean flag, which of the static or instance
field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

isub

Operation Subtract integers

Syntax I : isub (I 1, I 2)

Description The isub opcode provides the result of subtractionI 1 − I 2.

iswitch

Operation Transfer control based on integer jump table

Syntax S: iswitch (I ,[$i , @l]...)

Description Theiswitch opcode uses the result of expressionI to transfer execution based
on an integer jump table. Each entry$i defines a label@l that will be used to
transfer execution if there is a match. If there is no match, execution is not
transfered and continues sequentially. No entry$i may appear twice on the
jump table.

178 INTERMEDIATE REPRESENTATION SPECIFICATION

iuse

Operation Read integer register

Syntax I : iuse (%i)

Description The iuse opcode loads the value of register%i .

iushr

Operation Logical shift right integer

Syntax I : iushr (I 1, I 2)

Description The iushr opcode provides the result of operationI 1 >>> I 2.

ixor

Operation Bitwise xor integers

Syntax I : ixor (I 1, I 2)

Description The ixor opcode provides the result of operationI 1ˆI 2.

jump

Operation Transfer control unconditionally

Syntax S: jump (@l)

Description The jump opcode transfer execution to label@l, unconditionally.

l2d

Operation Convert long integer to double

Syntax D: l2d (L)

Description The l2d opcode converts the long integer expressionL to double.

l2f

Operation Convert long integer to float

Syntax F : l2f (L)

Description The l2f opcode converts the long integer expressionL to float.

OPCODES 179

l2i

Operation Convert long integer to integer

Syntax I : l2i (L)

Description The l2i opcode converts the long integer expressionL to integer.

label

Operation Declare label

Syntax S: label (@l)

Description The label opcode associates the current point in the IR program to label@l.

ladd

Operation Add long integers

Syntax L : ladd (L1, L2)

Description The ladd opcode provides the result of additionL1 + L2.

laload

Operation Load long integer from array

Syntax L : laload (A, I)

Description The laload opcode reads a long integer from arrayA at indexI . A must be a
non-null reference to a long integer array instance.I must be non-negative and
less thanA length.

Class memory-accessing

land

Operation Bitwise and long integers

Syntax L : land (L1, L2)

Description The land opcode provides the result of operationL1&L2.

180 INTERMEDIATE REPRESENTATION SPECIFICATION

lastore

Operation Store into long integer array

Syntax S: lastore (A, I , L)

Description The lastore opcode writes a long integerL into arrayA at indexI . A must
be a non-null reference to a long integer array instance.I must be non-negative
and less thanA length.

Class memory-accessing

lcmp

Operation Compare long integers

Syntax I : lcmp (L1, L2)

Description The lcmp opcode compares signed long integersL1 and L2. If L1 < L2, a
negative integer value is provided. IfL1 = L2, the integer value0 is provided.
If L1 > L2, a positive integer value is provided.

lconst

Operation Provide long integer constant

Syntax L : lconst ($l)

Description The lconst opcode provides the long integer constant$l .

ldefine

Operation Write long integer register

Syntax S: ldefine (%l , L)

Description The ldefine opcode stores the value of expressionL in register%l .

ldiv

Operation Divide long integers

Syntax L : ldiv (L1, L2)

Description The ldiv opcode provides the result of divisionL1/L2. L2 must be non-zero.

OPCODES 181

length

Operation Get length of array

Syntax I : length (A)

Description Thelength opcode provides the number of elements of an array instance. The
expressionA must evaluate to a non-null array reference. It provides a non-
negative integer.

Notes The length opcode may be handled as if it were an arithmetic expression.
It does not have side effects and will always provide the same value once its
argument is fixed.

lload

Operation Load long integer from field

Syntax L : lload (A, #o , #v)

Description The lload opcode reads a long integer field fromA at offset#o . A must be a
non-null reference.

The attribute#o specifies the long integer field offset using the encoding de-
scribed on Section 4.4. It also tells, using a boolean flag, which of the static or
instance field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

lmul

Operation Multiply long integers

Syntax L : lmul (L1, L2)

Description The lmul opcode provides the result of multiplicationL1 ∗ L2.

lneg

Operation Negate long integer

Syntax L : lneg (L)

Description The lneg opcode provides the result of negation−L .

182 INTERMEDIATE REPRESENTATION SPECIFICATION

lock

Operation Acquire lock for object

Syntax S: lock (A, #t)

Description The lock opcode acquires the lock for objectA. The expressionA must evalu-
ate to a non-null reference. If the lock has been previously acquired by another
threadit will block until the lock is released.

The attribute#t contains information regarding stack inspection and tracing.

Class inspection-point

Notes Locks are recursive.

Thelock opcode has no semantics regarding the memory model. The invalida-
tion of cached memory reads is done using thereadbarrier opcode.

This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

lockx

Operation Acquire lock for object, handle failure

Syntax S: lockx (A, #t , @l)

Description The lockx opcode acquires the lock for objectA. The expressionA must eval-
uate to a non-null reference. If the lock has been previously acquired by another
threadit will block until the lock is released.

The attribute#t contains information regarding stack inspection and tracing.

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

Class inspection-point, exception-prone

Notes Locks are recursive.

Thelock opcode has no semantics regarding the memory model. The invalida-
tion of cached memory reads is done using thereadbarrier opcode.

lor

Operation Bitwise or long integers

Syntax L : lor (L1, L2)

Description The lor opcode provides the result of operationL1|L2.

OPCODES 183

lpass

Operation Pass long integer as parameter to method call

Syntax S: lpass (L)

Description Thelpass opcode passes a long integerL as parameter to a subsequent method
call.

Class parameter-passing

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

lreceive

Operation Write method parameter to long integer register

Syntax S: lreceive (%l)

Description The lreceive opcode stores the parameter received by a method, upon its
call, in long integer register%l .

Class parameter-receiving

Notes Parameter-receivingopcodes must appear on top of IR programs, before all
other opcodes. They must be placed according to the method signature inleft-
to-right order.

lrem

Operation Remainder long integers

Syntax L : lrem (L1, L2)

Description Thelrem opcode provides the result of remainderL1%L2. L2 must be non-zero.

lresult

Operation Write method result to long integer register

Syntax S: lresult (%l)

184 INTERMEDIATE REPRESENTATION SPECIFICATION

Description The lresult opcode stores the result of a method call in long integer register
%l . It must appear just after the method call opcode and be used only when
calling long integer methods.

Class result-saving

lreturn

Operation Return from long integer method

Syntax S: lreturn (L)

Description The lreturn opcode returns from the current executing method. The current
executing method must be a long integer method. The value of expressionL is
used as the return value.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

lshl

Operation Shift left long integer

Syntax L : lshl (L , I)

Description The lshl opcode provides the result of operationL << I .

lshr

Operation Arithmetic shift right long integer

Syntax L : lshr (L , I)

Description The lshr opcode provides the result of operationL >> I .

lstore

Operation Store into long integer field

Syntax S: lstore (A, #o , #v , L)

Description The lstore opcode writesL into a long integer field ofA at offset#o . A must
be a non-null reference.

OPCODES 185

The attribute#o specifies the long integer field offset using the encoding de-
scribed on Section 4.4. It also tells, using a boolean flag, which of the static or
instance field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

lsub

Operation Subtract long integers

Syntax L : lsub (L1, L2)

Description The lsub opcode provides the result of subtractionL1 − L2.

luse

Operation Read long integer register

Syntax L : luse (%l)

Description The luse opcode loads the value of register%l .

lushr

Operation Logical shift right long integer

Syntax L : lushr (L , I)

Description The lushr opcode provides the result of operationL >>> I .

lxor

Operation Bitwise xor long integers

Syntax L : lxor (L1, L2)

Description The lxor opcode provides the result of operationL1ˆL2.

mlookup

Operation Search for method

Syntax A: mlookup (A, #i)

186 INTERMEDIATE REPRESENTATION SPECIFICATION

Description Themlookup provides the method at dispatch table index#i of classA. The
expressionA must evaluate to a non-null reference of classClass . Themlookup
provides a non-null reference of classMethodText .

Notes The mlookup opcode may be handled as if it were an arithmetic expression.
It does not have side effects and will always provide the same value once its
argument and attribute are fixed.

ncall

Operation Call native method

Syntax S: ncall (#c , #s , #t)

Description Thencall opcode calls the native implementation of native method identified
by signature#s declared on class#c . The parameters to the call are passed
before this opcode usingparameter-passingopcodes. If the callee method is not
void, aresult-savingopcode may be used just after thecall opcode to store the
result in a register.

The attribute#c identifies the declaring class of the method to be called by
ncall . It is represented by the name of a class or interface in itsextended
fully-qualified internalform (Section 4.3.1).

The attribute#s contains the name and descriptor of the callee method.

The attribute#t contains information regarding stack inspection and tracing.

Class method-call, inspection-point

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

It the callee method is static, an extra reference to the class that declares it must
be passed right before thencall opcode.

The type of theresult-savingopcode must match the type of the method being
called.

This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

ncallx

Operation Call native method, handle failure

OPCODES 187

Syntax S: ncallx (#c , #s , #t , @l)

Description Thencallx opcode calls the native implementation of native method identified
by signature#s declared on class#c . The parameters to the call are passed
before this opcode usingparameter-passingopcodes. If the callee method is not
void, aresult-savingopcode may be used just after thecall opcode to store the
result in a register.

The attribute#c identifies the declaring class of the method to be called by
ncall . It is represented by the name of a class or interface in itsextended
fully-qualified internalform (Section 4.3.1).

The attribute#s contains the name and descriptor of the callee method.

The attribute#t contains information regarding stack inspection and tracing.

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

Class method-call, inspection-point, exception-prone

Notes The parameter passing protocol in an IR program isright-to-left rather thanleft-
to-right, as adopted in Java bytecodes.

The number and types ofparameter-passingopcodes must match the number
and types of the method being called. They should appear in the expected order
just before the associatedmethod-callopcode.

It the callee method is static, an extra reference to the class that declares it must
be passed right before thencallx opcode.

The type of theresult-savingopcode must match the type of the method being
called.

newarray

Operation Allocate new array

Syntax S: newarray (A, I , #t)

Description Thenewarray opcode allocates space for a new array in the garbage collected
heap. The expressionA must evaluate to a non-null reference of an array type
instance of classClass . The expressionI must evaluate to a non-negative
value. The new array will have room forI elements of the appropriate type,
initialized with default values.

The attribute#t contains information regarding stack inspection and tracing.

Class memory-allocation, inspection-point

Notes This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

188 INTERMEDIATE REPRESENTATION SPECIFICATION

newarrayx

Operation Allocate new array, handle failure

Syntax S: newarrayx (A, I , #t , @l)

Description The newarrayx opcode allocates space for a new array in the garbage col-
lected heap. The expressionA must evaluate to a non-null reference of an array
type instance of classClass . The expressionI must evaluate to a non-negative
value. The new array will have room forI elements of the appropriate type,
initialized with default values.

The attribute#t contains information regarding stack inspection and tracing.

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

Class memory-allocation, inspection-point, exception-prone

newinstance

Operation Allocate new object

Syntax S: newinstance (A, #t)

Description The newinstance opcode allocates space for a new instance in the garbage
collected heap. The expressionA must evaluate to a non-null reference of a non-
abstract instance of classClass . The new object have all its fields initialized
with default values.

The attribute#t contains information regarding stack inspection and tracing.

Class memory-allocation, inspection-point

Notes This opcode is notexception-prone, hence, upon failure an exception is thrown
in the frame of the caller method.

newinstancex

Operation Allocate new object, handle failure

Syntax S: newinstancex (A, #t , @l)

Description Thenewinstancex opcode allocates space for a new instance in the garbage
collected heap. The expressionA must evaluate to a non-null reference of a non-
abstract instance of classClass . The new object have all its fields initialized
with default values.

The attribute#t contains information regarding stack inspection and tracing.

OPCODES 189

Upon failure, the control is transfered to label@l. An acatch opcode must be
the first statement following the label@l.

Class memory-allocation, inspection-point, exception-prone

readbarrier

Operation Discards cached reads

Syntax S: readbarrier ()

Description The readbarrier opcode marks a point in the IR program where all cached
memory reads must be discarded.

Notes Once its single-threaded semantics does not change, the IR program may be
transformed to anticipate memory reads, keeping values cached on registers.
Thereadbarrier opcode prevents those values from staying cached.

saload

Operation Load char or short from array

Syntax I : saload (A, I)

Description Thesaload opcode reads the lower 16 bits of the integer from arrayA at index
I . A must be a non-null reference to a char or short array instance.I must be
non-negative and less thanA length. The higher 16 bits of the integer provided
by saload are left unspecified.

Class memory-accessing

sastore

Operation Store into char or short array

Syntax S: sastore (A, I 1, I 2)

Description Thesastore opcode writes the lower 16 bits of integerI 2 into arrayA at index
I 1. A must be a non-null reference to a char or short array instance.I 1 must be
non-negative and less thanA length.

Class memory-accessing

190 INTERMEDIATE REPRESENTATION SPECIFICATION

sload

Operation Load char or short from field

Syntax I : sload (A, #o , #v)

Description Thesload opcode reads the lower 16 bits of the integer from char or short field
of A at offset#o . A must be a non-null reference. The higher 16 bits of the
integer provided bysload are left unspecified.

The attribute#o specifies the char or short field offset using the encoding de-
scribed on Section 4.4. It also tells, using a boolean flag, which of the static or
instance field tables must be used.

The attribute#v indicates if the read isvolatile, i.e. cannot be cached.

Class memory-accessing

sstore

Operation Store into char or short field

Syntax S: sstore (A, #o , #v , I)

Description The sstore opcode writes the lower 16 bits of integerI into a char or short
field of A at offset#o . A must be a non-null reference.

The attribute#o specifies the char or short field offset using the encoding de-
scribed on Section 4.4. It also tells, using a boolean flag, which of the static or
instance field tables must be used.

The attribute#v indicates if the write isvolatile, i.e. cannot be cached.

Class memory-accessing

subtypeof

Operation Determine subtyping

Syntax I : subtypeof (A1, A2)

Description Thesubtypeof opcode checks if class or interfaceA1 is a subtype of class or
interfaceA2. Both expressions should evaluate to non-null references of class
Class .

OPCODES 191

unlock

Operation Release lock for object

Syntax S: unlock (A)

Description Theunlock opcode releases lock for objectA. The expressionA must evaluate
to a non-null reference. The lock must have been previously acquired before this
opcode is reached.

Notes Locks are recursive.

Theunlock opcode has no semantics regarding the memory model. The flush
of cached memory writes is done using thewritebarrier opcode.

vreturn

Operation Return from void method

Syntax S: vreturn ()

Description Thevreturn opcode returns from the current executing method. The current
executing method must be a void method.

Class method-returning

Notes Method-returningopcodes may appear anywhere in an IR program, not simply
at the end as one would expect.

writebarrier

Operation Flush cached writes

Syntax S: writebarrier ()

Description Thewritebarrier opcode marks a point in the IR program where all cached
memory writes must be flushed.

Notes Once its single-threaded semantics does not change, the IR program may be
transformed to handle memory writes lazily, keeping values cached on registers.
Thewritebarrier opcode prevents those values from staying cached.

Appendix B

Yet Another Tree Rewriting Tool

This chapter describes RING (Rewriting for INtermediate Grammar), atree rewriting toolthat
usestree pattern matching[HO82, Cha87, PL87] anddynamic programming. Its design is
based oniburg[FHP92a, Fra89], although it has a different language and interface. It outputs
a hard-codedmatcher that doesdynamic programmingat compile time, similarly asiburg.
The input specification is a proper superset of theJava Programming Language[AG00]. It su-
percedesiburg functionality since it supportsdefault rulesandnon-terminal templates. Also,
it provides a limited, but still useful,non-terminal inliningfacility. Matchers are generated
targeting theJava Programming Language.

This tree rewriting tool serves not only as acode generator generator[Fra77], but also as an
intermediate representation manipulator. The tool is tailored to the intermediate representation
(described in Appendix A), therefore it provides no syntax for declaringgrammar terminals.
For the same reason, it supports at most ternary arity tree patterns.

B.1 Specifications

The language for RING specification is an extension of the Java Programming Language.
Figure B.1 shows the subset of the rules of a Java EBNF grammar[GJS96,§8] that defines
the specification language extensions. To specify a tree matcher, the user must declare tree
pattern rules in the class that she chooses to implement the matcher. Every tree pattern rule
is associated to a non-terminal. Non-terminals are declared in the same way as fields and
methods are declared in the body of the matcher class.

A non-terminal declaration consists of some access flags, a name, a signature, template
parameters, non-terminal attributes, optimality expression, and rule declarations. The access
flags define the visibility of the non-terminal. In the generated matcher, any non-terminal
can be used asstart symbol. Visibility flags may be used to hide non-terminals not meant
to be start symbols. Theabstractaccess flags may be used to mark the non-terminal asin-
line (see Section B.3.3). The name is used to identify the non-terminal. The non-terminal
signature defines the signature of theaction functionthat users call when the optimal match
is found. Template parameters can be declared when creating template non-terminals (see
Section B.3.2). A non-terminal may declare attributes which are synthetized during pattern

193

194 YET ANOTHER TREE REWRITING TOOL

matching. The optimality expression is a boolean expression, based on synthetized attributes,
used to test and replace matches for the non-terminal. The set of rule declarations defines the
possible matches for that particular non-terminal.

ClassBodyDeclaration → Initializer
| NestedClassDeclaration
| NestedInterfaceDeclaration
| ConstructorDeclaration
| MethodDeclaration
| FieldDeclaration
| NonTerminalDeclaration

NonTerminalDeclaration → (“public” | “protected” | “private” | “abstract”)*
ResultType Identifier[TemplateId]
FormalParameters(“ [” “]”)* [“ throws” NameList]
[NonTerminalVars[“ [” Expression“]”]]
“ :” RuleDeclaration(“ |” RuleDeclaration)* “ ;”

NonTerminalVars → “<” NonTerminalVar(“ ,” NonTerminalVar)* “>”

NonTerminalVar → Type VariableDeclaratorId

RuleDeclaration → TreePattern[“ [” Expression“]”] [Block] [“ =” Block]
| “default” [Block] [“ =” Block]

TreePattern → Name
[“ (” TreePattern(“ ,” TreePattern)* “)”]
[TreePattern]

| Identifier [TemplateId]

TemplateId → “<” Identifier (“ ,” Identifier)* “>”

Figure B.1: EBNF grammar excerpt for Java based matcher specifications.

Each rule declaration consists of a tree pattern and three optional functions: a predicate
expression, a synthetize function and an action function. It is also possible to declare default
rules (see Section B.3.1). The tree pattern is constructed using terminals as parent nodes and
non-terminals as child nodes. Each terminal is associated to an intermediate representation
opcode of fixed arity. Instead of a tree pattern, a rule may have a single non-terminal on its
right hand side. Rules with a single non-terminal on its right hand side are known aschain
rules. Tree patterns provide syntax based matching which suffices on many cases. Some-
times extra information must be considered when matching, and this can be done by writing
a predicate expression. Predicate expressions are boolean expressions that may deny a match
based on an undesired semantic property. The synthetize function is used to synthetize the
non-terminal attributes, normally using attributes inherited from its children, once a match

SPECIFICATIONS 195

takes place. The action function is the function called by the user when the optimal match is
found. It is responsible for calling the action function of the tree pattern children.

public class Sample {

public void stmt(PrintStream out)
<int cost> [@@.cost < cost]

: IR.ISTORE(disp,reg)
{ @@.cost = 2+@2.cost+@3.cost; }
= { @2(out);

@3(out);
out.print("st "+RA.name(@3.reg));
out.println(",("+RA.name(@2.reg)+")"+@1.getOfs()); }

| IR.IDEFINE(reg)
{ @@.cost = @2.cost; }
= { @2(out); }
;

private void reg(PrintStream out)
<int cost, int reg> [@@.cost < cost]

: IR.IADD(reg,rc)
{ @@.cost = 1+@2.cost+@3.cost;

@@.reg = @2.reg; }
= { @2(out);

@3(out);
out.println("add "+@3.addr+","+RA.name(@2.reg)); }

| IR.I2B(IR.ILOAD(disp))
{ @@.cost = 3+@3.cost;

@@.reg = @3.reg; }
= { @3(out);

out.print("ld ("+RA.name(@3.reg)+")+"+@2.getOfs());
out.println(","+RA.name(@3.reg));
out.println("sx "+RA.name(@3.reg)); }

| IR.ICONST [@1.getValue() == 0]
{ @@.cost = 0;

@@.reg = RA.zero(); }
= { }
| disp
{ @@.cost = @1.cost;

@@.reg = @1.reg; }
= { @1(out); }
;

Figure B.2: Sample matcher specification.

Figures B.2 and B.3 show a sample matcher specification. It implements a toy back-end
for a generic RISC machine based on a subset of the intermediate representation. Five non-
terminals are defined:stmt to match statements,reg to match register expressions,disp
to match reference expressions,rc to match register or constant expressions, andcon to

196 YET ANOTHER TREE REWRITING TOOL

match constant expressions. We assume the reader is familiar with tree rewriting systems, like
[FHP92a, FHP92b, AGT89, Tji86, Tji93, ESL89, BDB90].

Thestmt non-terminal is the only non-terminal defined as public, so it is the start sym-
bol. It has acost attribute that stores the number of cycles required to execute the whole
statement. The optimality expression@@.cost < cost is used to choose the match with
the smallest cost. The@@.cost identifies the cost of a recent match,cost is the best cost so
far. Thestmt non-terminal declares two tree pattern rules. The first rule matches integer field
assignment (istore). For that rule, the cost of the match is computed by the sum of subex-
pressionsdisp andreg plus2 cycles of memory access. In the action function, the code for
each subexpression is generated first, then astoreinstruction is emitted onout . The second
rule matches integer register definition (idefine). Since the rule already requires that the
definition expression stays on a register,reg , the cost of the match is the cost inherited from
reg . Similarly, the action function does not require an operation different from calling the
reg action function.

The reg non-terminal matches expressions whose values are kept in registers. It has a
cost attribute similar to thestmt non-terminal. In addition, it provides areg attribute
which stores the index of the register that holds the expression result value. The optimality
expression defines the same behavior as instmt , it chooses the match with the smallest
cost. Thereg non-terminal declares three tree pattern rules. The first matches aniadd
opcode generating anadd reg,reg or add imm,reg instruction, keeping the result in
the register synthetized byreg with cost1. The second rule matches a zero valued expression.
It uses a predicate expression to accept the match only if theiconst constant value is0. This
rule has cost zero and no action, so thereg attribute is synthetized with the read-only zero
valued register. The third rule is a chain rule, it means that matches fordisp non-terminal
will apply similarly for thereg non-terminal.

Thedisp non-terminal acts like thereg non-terminal, however, it deals with reference
expressions. The first rule matches an expression that reads a reference field. The result value
is kept in the register provided by areg expression, the cost is increased by2 and it outputs
an ld instruction. The second rule matches a reference register use. It has no cost and an
empty action function. The synthetized attributereg is determined by the register allocator.

Therc non-terminal matches a constant or register expression. It computes the cost in the
usual way, and has an assemblyString attribute with the result operand. The first rule is
a chain rule that matches constant expressions. It synthetizes the constant with an immediate
syntax$. The second rule is also a chain rule that matches register expressions. Theaddr
attribute is synthetized with the register name.

Thecon non-terminal matches integer constant expressions. There is no need for a cost
attribute since there is no runtime cost for constant expressions. The only attribute synthetized
by thecon non-terminal isvalue , which holds the constant value of the expression. The first
rule matches theiconst opcode which provides a constant value. The second rule performs
constant foldingfor the iadd opcode, by computing the constant result of an expression at
compile time.

The sample matcher, shown in Figures B.2 and B.3, provides a broader idea of basic
matcher specification. The usage of the matcher is very simple: The user must instantiate a

SPECIFICATIONS 197

private void disp(PrintStream out)
<int cost, int reg> [@@.cost < cost]

: IR.ALOAD(reg)
{ @@.cost = 2+@2.cost;

@@.reg = @2.reg; }
= { @2(out);

out.print("ld ("+RA.name(@2.reg)+")+"+@1.getOfs());
out.println(","+RA.name(@2.reg)); }

| IR.AUSE
{ @@.cost = 0;

@@.reg = RegAlloc.alloc(@1.getReg()); }
= { }
;

private void rc(PrintStream out)
<int cost, String addr> [@@.cost < cost]

: con
{ @@.cost = 0;

@@.addr = "$"+@1.value; }
= { }
| reg
{ @@.cost = @1.cost;

@@.addr = RA.name(@1.reg); }
= { @1(out); }
;

private void con()
<int value>

: IR.ICONST
{ @@.value = @1.getValue(); }
| IR.IADD(con,con)
{ @@.value = @2.value+@3.value; }
;

}

Figure B.3: Sample matcher specification (continued).

public class Main {
public static void main(String[] args) {

IR.snode stmt = /* ... snip ... */;
Sample matcher = new Sample(stmt);
System.out.println("cost = "+matcher.stmt.cost);
matcher.stmt(System.out);

}
}

Figure B.4: Sample matcher usage.

198 YET ANOTHER TREE REWRITING TOOL

matcher passing as argument the IR tree to be processed. After construction, the matcher will
have performed tree pattern matching and dynamic programming onstmt . The attributes
and action functions for eachaccessiblenon-terminal become available for usage. A sample
usage can be seen on Figure B.4.

B.2 Implementation

The matcher generated from theSample specification is implemented by the classSample .
An instance of classSample is associated to each IR node in the IR tree, it stores attributes
and best matches. For each non-terminal, two fields are added to the matcher class: the non-
terminal rule index and a non-terminal attribute class reference. The non-terminal attribute
class is aninner classthat declares the attributes as fields and the optimality expression as a
method. Figure B.5 shows the declaration of those fields and inner classes for non-terminals
stmt andreg .

private byte stmt$id;
public stmt stmt;

public static final class stmt {

public int cost;

private boolean better$(final stmt $$) {
return $$.cost < cost;

}

}

private byte reg$id;
private reg reg;

private static final class reg {

public int cost;
public int reg;

private boolean better$(final reg $$) {
return $$.cost < cost;

}

}

Figure B.5: Structures generated for thereg rule.

Additional information is generated on the matcher class. The dynamic programming
algorithm is implemented on the constructor of the class. Extra instance fields are generated

IMPLEMENTATION 199

in the class to implement a mirror of the IR tree. Figure B.6 shows the fields and constructors
generated for classSample . Field node$ points to the IR opcode that the current node
mirrors. Fieldsleft$, middle$ andright$ are used to store the mirrors for the children
of the IR opcode, according to its arity. Two constructors are generated, the public one is
used by users to instantiate a matcher and the private one implements thebottom-upmatching
recursively.

private final TreeNode node$;
private Sample left$, middle$, right$;

public Sample(TreeNode node$) {
this(null, node$);

}

private Sample(TreeNode root$, TreeNode node$) {
this.node$ = node$;
switch (node$.op()) {
case IR.I2B: {

final IR.i2b $1 = (IR.i2b)node$;
left$ = new Sample(root$, $1.left());
tree$4(root$, $1);
break;

}
case IR.IADD: {

final IR.iadd $1 = (IR.iadd)node$;
left$ = new Sample(root$, $1.left());
right$ = new Sample(root$, $1.right());
tree$1(root$, $1);
tree$2(root$, $1);
break;

}
/* .. snip ...*/
default:

if (node$.hasNext())
root$ = node$;

switch (node$.arity()) {
case 0: break;
case 1: left$ = new Sample(root$, node$.left()); break;
case 2: left$ = new Sample(root$, node$.left());

right$ = new Sample(root$, node$.right()); break;
case 3: left$ = new Sample(root$, node$.left());

middle$ = new Sample(root$, node$.middle());
right$ = new Sample(root$, node$.right()); break;

default: throw new Error("Illegal arity");
}

}
}

Figure B.6: Matcher variables and constructors.

200 YET ANOTHER TREE REWRITING TOOL

Bottom up matching is achieved by firstswitchingon the opcodes that appear on the root
of tree patterns. Once the opcode has been identified, a matcher node is created for each of
its children by invoking the constructor recursively. After that, each tree pattern is tested and
possibly replaced by callingtree$ methods.

The action function is implemented by testing the rule index of a particular non-terminal
for the current matcher node. If the rule index is0 then there was no match and anError is
thrown. Otherwise the associated action code is executed, if provided by the user. Figure B.7
shows the action function implementation generated for the non-terminalreg of theSample
matcher.

private final void reg(PrintStream out) {
final Sample $$ = this;
switch (reg$id) {
case 0: throw new Error("No match");
case 1: {

final IR.iadd $1 = (IR.iadd)$$.node$;
final Sample $2 = $$.left$;
final Sample $3 = $$.right$;
$2.reg(out);
$3.rc(out);
out.println("add "+$3.rc.addr+","+RA.name($2.reg.reg));
break;

}
case 2: {

final IR.i2b $1 = (IR.i2b)$$.node$;
final IR.iload $2 = (IR.iload)$$.left$.node$;
final Sample $3 = $$.left$.left$;
$3.disp(out);
out.print("ld ("+RA.name($3.disp.reg)+")+"+$2.getOfs());
out.println(","+RA.name($3.disp.reg));
out.println("sx "+RA.name($3.disp.reg));
break;

}
case 3: {

final IR.iconst $1 = (IR.iconst)$$.node$;

break;
}
case 4: {

final Sample $1 = $$;
$1.disp(out);
break;

}
default: throw new Error("Unimplemented rule");
}

}

Figure B.7: Action method generated for thereg rule.

RING EXTENSIONS 201

Figure B.8 shows some of thetree$ functions generated for theSample matcher. The
rule match is computed by first checking if there is a pattern match. Then, for each rule that
declares that pattern as the right hand side, the predicate expression is checked for a semantic
test. If the semantic test passes, the synthetized function is used to synthetize the attributes
of the non-terminal. At last, the optimality function for that non-terminal is used to compare
the new match with the best match so far. If no best match results is found, the new match is
accepted automatically.

The functiontree$0 computes the match for patternIR.ICONST . This pattern appears
in a rule of non-terminalcon and a rule of non-terminalreg . Since this pattern is composed
of a single root terminal — and has no children — the syntatic match has already been com-
pletely computed. In a first moment, the rule of non-terminalcon is handled. Itsvalue
attribute is computed in a temporary register and, sincecon does not define an optimality
expression, the match is only registered if it is the first occurred (con$id = 0). Sincecon
is the right hand side of chain rules, upon a match we must check the match on the letf hand
side of each of those chain rules. This is done by calling methodcon$closure . Next, the
same occurs when the rule of non-terminalreg is handled. The associated predicate expres-
sion is checked, and the match occurs only if the constant value is0. The attributes ofreg
are synthetized and the rule is accepted if no match has been accepted so far, or if it is better
than the current best match. The chain rules that havereg as right hand side are checked by
calling methodreg$closure .

For the patternsIR.IADD(reg,rc) andIR.I2B(IR.ILOAD(disp)) , similar code
is generated to check matches on methodstree$1 andtree$4 respectively. However, since
those patterns are a bit more than just childless terminals, the code is generated enclosed by
a syntatic test expression. The syntatic test expression checks if the non-root terminals of
the pattern occur in the IR tree and if there is a match in each IR subtree associated to every
non-terminal.

For each non-terminal that appears in the right hand side of a chain rule, aclosuremethod
is generated. Figure B.9 shows the implementation of closure methods for non-terminalsrc ,
disp and reg . Those methods are implemented just like tree matching methods. Chain
rules may include cycles in the grammar, which are implemented by recursive calls of closure
methods. To avoid infinite looping during tree matching, the cost (or whatever metric used to
achieve optimality) must increase when applying a direct or indirect recursive chain rule.

B.3 RING Extensions

This section describes the extensions to the bare tree rewriting tool described above. These
extensions were designed to reduce the developing time of large complex matchers.

B.3.1 Default Rules

Default rulesare rules that match only if no other rule matches. Although they are not con-
sidered to be a match by the rules that use the associated non-terminal, default rules provide a
mechanism to synthetize and write actions when no match takes place.

202 YET ANOTHER TREE REWRITING TOOL

private final void tree$0(TreeNode root$, IR.iconst $1) {
final con $$ = new con();
$$.value = $1.getValue();
if (con$id == 0) {

con = $$; con$id = 1; con$closure(root$);
}
if ($1.getValue() == 0) {

final reg $$ = new reg();
$$.cost = 0;
$$.reg = RA.zero();
if (reg$id == 0 || reg.better$($$)) {

reg = $$; reg$id = 3; reg$closure(root$);
}

}
}

private final void tree$1(TreeNode root$, IR.iadd $1) {
if (left$.reg$id != 0 && right$.rc$id != 0) {

final Sample $2 = left$;
final Sample $3 = right$;
final reg $$ = new reg();
$$.cost = 1+$2.reg.cost+$3.rc.cost;
$$.reg = $2.reg.reg;
if (reg$id == 0 || reg.better$($$)) {

reg = $$; reg$id = 1; reg$closure(root$);
}

}
}

private final void tree$4(TreeNode root$, IR.i2b $1) {
if (left$.node$.op() == IR.ILOAD

&& left$.left$.disp$id != 0) {
final IR.iload $2 = (IR.iload)left$.node$;
final Sample $3 = left$.left$;
final reg $$ = new reg();
$$.cost = 3+$3.disp.cost;
if (reg$id == 0 || reg.better$($$)) {

reg = $$; reg$id = 2; reg$closure(root$);
}

}
}

Figure B.8: Tree matching methods.

RING EXTENSIONS 203

private final void con$closure(final TreeNode root$) {
final Sample $1 = this;
final rc $$ = new rc();
$$.cost = 0;
$$.addr = "$"+$1.con.value;
if (rc$id == 0 || rc.better$($$)) {

rc = $$; rc$id = 1;
}

}

private final void disp$closure(final TreeNode root$) {
final Sample $1 = this;
final reg $$ = new reg();
$$.cost = $1.disp.cost;
$$.reg = $1.disp.reg;
if (reg$id == 0 || reg.better$($$)) {

reg = $$; reg$id = 4; reg$closure(root$);
}

}

private final void reg$closure(final TreeNode root$) {
final Sample $1 = this;
final rc $$ = new rc();
$$.cost = $1.reg.cost;
$$.addr = RA.name($1.reg.reg);
if (rc$id == 0 || rc.better$($$)) {

rc = $$; rc$id = 2;
}

}

Figure B.9: Closure methods for chain rules.

204 YET ANOTHER TREE REWRITING TOOL

public void stmt(PrintStream out) throws NoMatchException
<int cost> [@@.cost < cost]

: IR.ISTORE(disp,reg)
/* ... snip ... */
| default
{ @@.cost = Integer.MAX VALUE; }
= { throw new NoMatchException(@1.toString()); }
;

public class NoMatchException extends Exception {

public NoMatchException() { }

public NoMatchException(String message) {
super(message);

}

}

Figure B.10: Default rule syntax.

Figure B.10 shows a default rule added to non-terminalstmt of matcherSample . This
default rule was declared to throw aNoMatchException (instead of internalError) when
there is no match.

The implementation of default rules is very simple. In the matcher constructor, before
returning, we check the rule indices for all non-terminals that declare a default rule. For those
whose index is0, we apply the default rule. In the action function, the code declared for
default rules is emitted for the c ase value0. That can be seen on Figure B.11.

B.3.2 Non-Terminal Templates

Non-terminal templatesare useful to declare multiple similar non-terminals with the same
rules. Instead of writing a declaration for each of many similar non-terminals, the user writes
the template declaration and instantiates it by using it with a defined parameter.

Figure B.12 shows a template,reg<RID> , which is instantiated asreg<GR0> and
reg<GR1> onstmt non-terminal. That way, instead of having a match for generic registers,
appropriate for RISC machines, you can make the matching for each register separately, what
saves time when describing CISC matchers.

The implementation of non-terminal templates is straightforward. It is done by substitut-
ing non-terminal templates by multiple specialized non-terminals in the grammar. For each
different combination of template parameters in a non-terminal template, an associated non-
terminal is declared to implement that template instance. In the declaration of this new non-
terminal, its actual template parameters are replaced on subsequent template uses on the right
hand side of its rules. This may produce new template instances which are processed the same
way. Once all non-terminal template uses are replaced by new non-terminals, they can be

RING EXTENSIONS 205

private Sample(TreeNode root$, TreeNode node$) {
this.node$ = node$;
/* ... snip ... */
if (stmt$id == 0) {

final stmt $$ = new stmt();
final TreeNode $1 = node$;
$$.cost = Integer.MAX VALUE;
stmt = $$;

}
}

public final void stmt(PrintStream out) throws NoMatchException {
final Sample $$ = this;
switch (stmt$id) {
case 0: {

final TreeNode $1 = $$.node$;
if (true) {

throw new NoMatchException($1.toString());
}
break;

}
/* ... snip ... */

}

Figure B.11: Default rule implementation.

public static final int ridGR0 = 16, ridGR1 = 17;

public void stmt(PrintStream out)
<int cost> [@@.cost < cost]

/* ... snip ... */
| IR.IDEFINE(reg<GR0>) { @@.cost = @2.cost; }
= { @2(out, ridGR0); }
| IR.IDEFINE(reg<GR1>) { @@.cost = @2.cost; }
= { @2(out, ridGR1); }
;

private void reg<RID>(PrintStream out, int rid)
<int cost> [@@.cost < cost]

: IR.IADD(reg<RID>,rc) { @@.cost = 1+@2.cost+@3.cost; }
= { @2(out, reg); @3(out);

out.println("add "+@3.addr+","+RA.name(rid)); }
/* ... snip ... */
;

Figure B.12: Rule template syntax.

206 YET ANOTHER TREE REWRITING TOOL

public void stmt(PrintStream out)
<int cost> [@@.cost < cost]

/* ... snip ... */
| IR.IDEFINE(reg GR0) { @@.cost = @2.cost; }
= { @2(out, ridGR0); }
| IR.IDEFINE(reg GR1) { @@.cost = @2.cost; }
= { @2(out, ridGR1); }
;

private void reg GR0(PrintStream out, int rid)
<int cost> [@@.cost < cost]

: IR.IADD(reg GR0,rc) { @@.cost = 1+@2.cost+@3.cost; }
= { @2(out, reg); @3(out);

out.println("add "+@3.addr+","+RA.name(rid)); }
/* ... snip ... */
;

private void reg GR1(PrintStream out, int rid)
<int cost> [@@.cost < cost]

: IR.IADD(reg GR1,rc) { @@.cost = 1+@2.cost+@3.cost; }
= { @2(out, reg); @3(out);

out.println("add "+@3.addr+","+RA.name(rid)); }
/* ... snip ... */
;

Figure B.13: Rule template implementation.

RING EXTENSIONS 207

removed from the specification. The result grammar is show in Figure B.13.

B.3.3 Non-Terminal Inlining

Non-terminal inliningallows the user to declare a non-terminal that comprises a set of sub-
patterns to be used by other non-terminals. This saves times when writing patterns having
subpatterns. The special non-terminal, marked with an “abstract” modifier, will not be consid-
ered by the matcher as a point of best match choice. For this reason, “abstract” non-terminals
cannot declare optimality expressions. This “abstract” non-terminal feature provides the same
behavior as if the right hand side of the rules were “inlined” in the patterns that use the “ab-
stract” non-terminal. That is why it is called non-terminal inlining.

public void stmt(PrintStream out)
<int cost> [@@.cost < cost]

/* ... snip ... */
| IR.IDEFINE(greg) { @@.cost = @2.cost; } = { @2(out); }
;

private abstract void greg(PrintStream out)
<int cost, int reg>

: reg<GR0>
{ @@.cost = @1.cost; @@.reg = ridGR0; } = { @1(out, ridGR0); }
| reg<GR1>
{ @@.cost = @1.cost; @@.reg = ridGR1; } = { @1(out, ridGR1); }
;

Figure B.14: Non-terminal inlining syntax.

Figure B.14 shows the use of non-terminal inlining to create a unified generic register non-
terminal,greg , while keeping independent matching for each one of them. This way, instead
of declaring a different pattern for each generic register template instance, the user writes one
single pattern that captures all generic registers.

Similarly to non-terminal templates, non-terminal inlining implementation is straightfor-
ward and can be achieved by rewriting the matcher specification. For each “abstract” non-
terminal rule, a new non-terminal is declared to match only the associated pattern. This pre-
vents the matcher from choosing patterns at that point, since at most one match will occur.
Then, each rule that uses an “abstract” non-terminal is replaced by many similar rules, one for
each non-terminal recently associated to each right hand side. This can be seen on Figure B.15.

Non-terminal inlining is a powerful mechanism to express many complex patterns without
having to write all the combinations. “Abstract” non-terminals reachable by themselves are
not allowed. This would require the generation of an infinite pattern matcher which is not
currently supported by RING.

208 YET ANOTHER TREE REWRITING TOOL

public void stmt(PrintStream out)
<int cost> [@@.cost < cost]

/* ... snip ... */
| IR.IDEFINE(greg0) { @@.cost = @2.cost; }
= { @2(out); }
| IR.IDEFINE(greg1) { @@.cost = @2.cost; }
= { @2(out); }
;

private void greg0(PrintStream out)
<int cost, int reg>

: reg<GR0>
{ @@.cost = @1.cost; @@.reg = ridGR0; } = { @1(out, ridGR0); }
;

private void greg1(PrintStream out)
<int cost, int reg>

: reg<GR1>
{ @@.cost = @1.cost; @@.reg = ridGR1; } = { @1(out, ridGR1); }
;

Figure B.15: Non-terminal inlining implementation.

List of Figures

1.1 A shared JIT server. 2

3.1 Client JVM subcomponents. 14
3.2 JIT interface implementations. 15
3.3 Server JVM subcomponents. 15
3.4 System functional diagram. 16

4.1 Diagram showing class states and phases. 19
4.2 Extending non-public class, context: (a) Static; (b) Before loading; (c) Both

classes defined by the same class loader; (d) Each class defined in a different
class loader. 21

4.3 Mapped contexts. 22
4.4 Extended class name syntax. 22
4.5 Two contexts: (a) Single interface; (b) Multiple interface. 23
4.6 Different contexts that are identified equally. 24
4.7 REGISTERphase result information for classStack 25
4.8 LOAD phase result information for classStack 26
4.9 META phase result information for classStack 27
4.10 CONTEXT phase result information for classStack 28
4.11 LINK phase result information for classStack 30

5.1 Verifier example control flow graph. 42

6.1 Exception windows: (a) Nested; (b) Non-nested; (c) Nested after transformation. 84

7.1 Stack frame organization. 96
7.2 Sample tree pattern rules extracted from the x86 specification. 99
7.3 Relocation of absolute addresses. 106
7.4 Patching of runtime callbacks. 106
7.5 Patching of method text calls. 108
7.6 Patching of string literal references. 108
7.7 Patching of meta class references. 109

8.1 Ordinary objects layout. 112
8.2 Arrays layout. 113
8.3 Method texts layout. 114

209

210 LIST OF FIGURES

8.4 Meta classes layout. 115
8.5 Free cells layout. 116
8.6 Block Records layout. 117
8.7 GC Info bits for each heap object. 118
8.8 Stack organization. 125

B.1 EBNF grammar excerpt for Java based matcher specifications. 188
B.2 Sample matcher specification. 189
B.3 Sample matcher specification (continued). 190
B.4 Sample matcher usage. 191
B.5 Structures generated for thereg rule. 192
B.6 Matcher variables and constructors. 193
B.7 Action method generated for thereg rule. 194
B.8 Tree matching methods. 195
B.9 Closure methods for chain rules. 196
B.10 Default rule syntax. 197
B.11 Default rule implementation. 198
B.12 Rule template syntax. 199
B.13 Rule template implementation. 199
B.14 Non-terminal inlining syntax. 200
B.15 Non-terminal inlining implementation. 201

List of Tables

5.1 Pseudo code instruction set. 37
5.2 Untyped bytecodes and their possible operands. 47

6.1 Valid register indices for each IR type. 50
6.2 Truth table for the confluence operatort. 88
6.3 Flow item for each opcode that provides reference result. 89

7.1 Registers used to store return values. 96

211

Bibliography

[ADM98] Ole Agesen, David Detlefs, and J. Elitot B. Moss. Garbage collection and local
variable type-precision and liveness in Java Virtual Machines. InProceedings
of the ACM SIGPLAN’98 Conference on Programming Language Design and
Implementation, June 1998.

[AG00] Ken Arnold and James Gosling.The Java Programming Language. The Java
Series. Addison-Wesley, third edition, June 2000.

[AJ76] A. V. Aho and S. C. Johnson. Optimal code generation for expression trees.
Journal of the ACM, 23(3):488–501, July 1976.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[Aze99] Ana Azevedo. Java anotation — aware Just-In-Time (AJIT) compilation system.
In ACM Java Grande Conference, June 1999.

[Bot97] Per Bothner.A GCC-based Java Implementation. Cygnus Solutions, February
1997.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software — Practice & Experience, 18(9):807–820, September
1988.

[CAC+81] Gregory Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring.Computer
Languages, 6:47–57, January 1981.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph.ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

[Cha87] David R. Chase. An improvement to bottom up tree pattern matching. InFour-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
168–177, January 1987.

213

214 BIBLIOGRAPHY

[CL97] Patrick Chan and Rosanna Lee.The Java Class Libraries, Volume 2: java.applet,
java.awt, java.beans. The Java Series. Addison-Wesley, second edition, October
1997.

[CLK98] Patrick Chan, Rosanna Lee, and Doug Kramer.The Java Class Libraries, Volume
1: java.io, java.lang, java.math, java.net, java.text, java.util. The Java Series.
Addison-Wesley, second edition, March 1998.

[CLK99] Patrick Chan, Rosanna Lee, and Doug Kramer.The Java Class Libraries, Volume
1: 1.2 Supplement. The Java Series. Addison-Wesley, second edition, May 1999.

[Coc70] J. Cocke. Global common subexpression elimination.SIGPLAN Notices,
5(7):20–25, July 1970.

[CU90] Craig Chambers and David Ungar. Iterative type analysis and extended message
splitting: Optimizing dynamically-typed object-oriented programs. InProceed-
ings of the ACM SIGPLAN’90 Symposium on Compiler Construction, 1990.

[CUL91] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF, a
dynamic-typed object-oriented language based on prototypes.Lisp and Symbolic
Computation, 4(3):243–281, 1991.

[FHP92] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineer-
ing a simple, efficient code generator generator.ACM Letters on Programming
Languages and Systems, 1(3):213–226, September 1992.

[FKR+99] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David
Tarditi. Marmot: An optimizing compiler for java. Technical Report MSR-TR-
99-33, Microsoft Research, June 1999.

[Fra77] Christopher W. Fraser.Automatic Generation of Code Generators. PhD thesis,
Yale University, 1977.

[Fra89] Christopher W. Fraser. A language for writing code generators. InProceedings
of the SIGPLAN’89 Conference on Programming Language Design and Imple-
mentation, pages 238–245, July 1989.

[GJS96] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification. The
Java Series. Addison-Wesley, June 1996.

[GRI83] A. Goldberg, D. Robson, and D. H. H. Ingalls.Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

[GS99] David Gay and Bjarne Steensgaard. Stack allocating objects in java. Technical
report, Microsoft Research, 1999.

[GYT96a] James Gosling, Frank Yellin, and The Java Team.The Java Application Pro-
gramming Interface, Volume 1: Core Packages. The Java Series. Addison-
Wesley, May 1996.

BIBLIOGRAPHY 215

[GYT96b] James Gosling, Frank Yellin, and The Java Team.The Java Application Pro-
gramming Interface, Volume 2: Window Toolkit and Applets. The Java Series.
Addison-Wesley, June 1996.

[HO82] Christoph Hoffmann and Michael J. O’Donnell. Pattern matching in trees.Jour-
nal of the ACM, 29(1):68–95, 1982.

[Hop71] John E. Hopcroft. Ann log n algorithm for minimizing the states in a finite
automaton. In Z. Kohavi, editor,Theory of Machines and Computations, pages
189–196. Academic Press, New York, 1971.

[IBM98] IBM Corporation. IBM High Performance Compiler for Java: An Optimizing
Native Code Compiler for Java Applications, July 1998.

[Int97a] Intel Corporation.Intel Architecture Software Developer’s Manual: Volume 1:
Basic Architecture, 1997. Order Number 243190.

[Int97b] Intel Corporation.Intel Architecture Software Developer’s Manual: Volume 2:
Instruction Set Reference, 1997. Order Number 243191.

[JL96] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, 1996.

[KG97] A. Krall and R. Grafi. CACAO a 64-bit JavaVM just in time compiler.Java
for Computational Science and Engineering — Simulation and Modeling II,
9(11):1017–1030, November 1997.

[KR88] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language.
Prentice Hall, second edition, 1988.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java Virtual Ma-
chine. InProceedings of the 13th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’98),
Vancouver, BC, Canada, October 1998.

[Les99] Dmitry Leskov. JET, Deployment Environment that Boosts Performance and
Saves Resources. Excelsior, December 1999. Whitepaper.

[LY96] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, June 1996.

[LY99] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, second edition, April 1999.

[Mey91] Bertrand Meyer.Eiffel: The Language. Object-Oriented Series. Prentice Hall,
1991.

216 BIBLIOGRAPHY

[MMBC97] Gilles Muller, Bárbara Moura, Fabrice Bellard, and Charles Consel. Harissa:
a flexible and efficient Java environment mixing bytecode and compiled code.
In Proceedings of the Third Conference on Object-Oriented Technologies and
Systems (COOTS’97), 1997.

[MMS98] Samuel P. Midkiff, Jośe E. Moreira, and Marc Snir. Optimizing array reference
checking in java programs. Research Report RC 21184(94652), IBM Research
Division, May 1998.

[Mor98] Robert Morgan. Building an Optimizing Compiler. Butterworth-Heinemann,
1998.

[Muc97] Steven S. Muchnick.Advanced Compiler Design & Implementation. Morgan
Kaufmann, 1997.

[Nat95] National Institute of Standards and Technology, U.S. Department of Commerce.
Secure Hash Standard, April 1995. Federal Information Processing Standards
Publication (FIPS PUB) 180-1.

[Ner58] Anil Nerode. Linear automaton transformations. InProceedings of the American
Mathematical Society, pages 541–544, 1958.

[OSM+00] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, and Y. Kimura.
OpenJIT: An open-ended, reflective JIT compiler framework for Java. In
ECOOP 2000, pages 362–387, 2000.

[PL87] Eduardo Pelegrı́-Llopart. Tree Transformations in Computer Systems. PhD the-
sis, University of California, December 1987.

[PTB+97] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim
Newsham, and Scott A. Watterson. Toba: Java for applications: A Way Ahead
of Time (WAT) compiler. InProceedings of the Third Conference on Object-
Oriented Technologies and Systems (COOTS’97), 1997.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. InProceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 32–41, January 1996.

[Sun97] Sun Microsystems.Java Native Interface Specification, May 1997.

[Sun98] Sun Microsystems.The Java HotSpot Virtual Machine Architecture, A White
Paper About Sun’s Second Generation Java Virtual Machine, March 1998.
Whitepaper.

[Ung84] David Ungar. Generation scavenging: A non-disruptive high performance stor-
age reclamation algorithm. InProceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
pages 157–167, 1984.

BIBLIOGRAPHY 217

[Yel96] Frank Yellin. The JIT Compiler API. Sun Microsystems, October 1996.

[YMP+99] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee,
Jinpyo Park, Yoo C. Chung, Suhyun Kim, Kemal Ebcioglu, and Erik Altman.
LaTTe: A Java VM Just-In-Time compiler with fast and efficient register allo-
cation. InInternational Conference on Parallel Architectures and Compilation
Techniques (PACT’99), New Port Beach, October 1999.

Index

aaload
definition, 149

aastore
definition, 150

acatch
definition, 150

aclass
definition, 150

adaptative optimization, 4
HotSpot, 5
JRockit, 6

adefine
definition, 150

ajump
definition, 151

aload
definition, 151

anull
definition, 151

apass
definition, 151

areceive
definition, 152

aresult
definition, 152

areturn
definition, 152

astore
definition, 153

astring
definition, 153

athrow
definition, 153

ause
definition, 154

Aware JIT, 4

baload
definition, 154

bastore
definition, 154

bload
definition, 154

bstore
definition, 155

BulletTrain, 8

call
definition, 155

callx
definition, 156

comptypeof
definition, 156

d2f
definition, 157

d2i
definition, 156

d2l
definition, 157

dadd
definition, 157

daload
definition, 157

dastore
definition, 157

dcmpg
definition, 158

dcmpl
definition, 158

dconst
definition, 158

ddefine
definition, 158

219

220 INDEX

ddiv
definition, 158

dload
definition, 159

dmul
definition, 159

dneg
definition, 159

dpass
definition, 159

dreceive
definition, 159

drem
definition, 160

dresult
definition, 160

dreturn
definition, 160

dstore
definition, 160

dstrict
definition, 161

dsub
definition, 161

duse
definition, 161

f2d
definition, 161

f2i
definition, 161

f2l
definition, 162

fadd
definition, 162

faload
definition, 162

fastore
definition, 162

fcmpg
definition, 162

fcmpl
definition, 163

fconst

definition, 162
fdefine

definition, 163
fdiv

definition, 163
fload

definition, 163
fmul

definition, 164
fneg

definition, 164
fpass

definition, 164
freceive

definition, 164
frem

definition, 165
fresult

definition, 165
freturn

definition, 165
fstore

definition, 165
fstrict

definition, 165
fsub

definition, 166
fuse

definition, 166

GCJ, 8
getclass

definition, 166

i2b
definition, 166

i2c
definition, 166

i2d
definition, 167

i2f
definition, 167

i2l
definition, 167

INDEX 221

i2s
definition, 167

iadd
definition, 167

iaload
definition, 167

iand
definition, 168

iastore
definition, 168

iburg, 187
iconst

definition, 168
idefine

definition, 168
idiv

definition, 168
ijump

definition, 168
iload

definition, 169
imlookup

definition, 169
imul

definition, 169
ineg

definition, 170
init

definition, 170
initx

definition, 170
ior

definition, 170
ipass

definition, 171
ireceive

definition, 171
irem

definition, 171
iresult

definition, 171
ireturn

definition, 172

ishl
definition, 172

ishr
definition, 172

islocked
definition, 172

istore
definition, 172

isub
definition, 173

iswitch
definition, 173

iuse
definition, 173

iushr
definition, 173

ixor
definition, 173

Java 2 SDK, 5
JET, 7
JOVE, 7
JRockit, 6
jump

definition, 174

Kaffe, 5

l2d
definition, 174

l2f
definition, 174

l2i
definition, 174

label
definition, 174

ladd
definition, 174

laload
definition, 175

land
definition, 175

lastore
definition, 175

LaTTe, 6

222 INDEX

lcmp
definition, 175

lconst
definition, 175

ldefine
definition, 176

ldiv
definition, 176

length
definition, 176

lload
definition, 176

lmul
definition, 176

lneg
definition, 177

lock
definition, 177

lockx
definition, 177

lor
definition, 178

lpass
definition, 178

lreceive
definition, 178

lrem
definition, 178

lresult
definition, 178

lreturn
definition, 179

lshl
definition, 179

lshr
definition, 179

lstore
definition, 179

lsub
definition, 180

luse
definition, 180

lushr

definition, 180
lxor

definition, 180

Marmot, 9
mlookup

definition, 180

ncall
definition, 180

ncallx
definition, 181

newarray
definition, 182

newarrayx
definition, 182

newinstance
definition, 183

newinstancex
definition, 183

OpenJIT, 9

readbarrier
definition, 183

saload
definition, 184

sastore
definition, 184

sload
definition, 184

sstore
definition, 185

subtypeof
definition, 185

Thin Threads, 6
TowerJ, 6
TRIPLE CROWN, 7

unlock
definition, 185

vreturn
definition, 185

INDEX 223

writebarrier
definition, 186

XDS, 7
XNJ, 7

	Overview
	The Scenario
	Our Goal
	Road Map

	Related Work
	Approaches to the Java Runtime Environment
	High-End Machines and Native Compilers
	Best of All Worlds

	Virtual Machine Design
	A JVM Architecture
	Software Components
	Client JVM
	Server JVM
	Client JVM Generator

	Functional Overview

	Server-Side Context Identification
	States & Phases
	Computing Class Versions
	Dealing with Class Loaders
	Extended Loader-Based Class Names
	Type Uncertainty and Interfaces

	A Portable Way of Describing Sizes and Offsets
	Describing Each Phase
	Register Phase
	Load Phase
	Meta Phase
	Context Phase
	Link Phase
	Relink Phase (Not Implemented)
	Translate Phase

	Efficient Bytecode Verification
	Symbolic Bytecode Verification
	Parsing the Class File
	Checking Static Constraints
	Checking Structural Constraints
	Verification Example
	What is Required to Go Further

	Bytecode Conversion
	Intermediate Representation Presentation
	Conversion Examples
	Constants, Local Variables, and Control Constructs
	Arithmetic
	More Control Examples
	Receiving Arguments
	Invoking Methods
	Working with Class Instances
	Arrays
	Compiling Switches
	Operations on the Operand Stack
	Throwing and Handling Exceptions
	Compiling Finally
	Synchronization

	Exception Windows Conversion
	Subroutine Conversion
	Post Conversion Optimizations
	Building Expression Trees
	Eliminating Null Checks
	Factoring Exception Throwing Code
	Control Optimizations

	Discussion about Assynchronous Exceptions

	The x86 Back-End
	Code Generation
	Stack Frame and Registers Usage Protocol
	Local Variable Binding
	Instruction Selection

	Cooperative Runtime Support
	Live Frame References and Stack Tracing Tables
	Exception Catching Routine
	Method Text Reference Table

	Relocation and Patch Tables
	Relocation Table
	Runtime Callback Patch Table
	Method Text Patch Table
	String Literal Patch Table
	Meta Class Patch Table

	Back-End Improvements

	Runtime Environment
	Heap Structures
	Ordinary Objects
	Array Objects
	Method Text Objects
	Meta Class Objects
	Free Cells
	Block Records

	Allocator Implementation
	GC Info Word
	Allocation Procedure
	Deallocation Procedure
	Heap Traversal Procedure

	Thread Stacks
	Stack Organization
	Stack Traversal Procedure
	Stack Overflow Detection

	Monitor Implementation
	JNI Implementation
	JVMDI and JVMPI Support

	The Garbage Collector
	Desired Features
	Runtime Requirements
	Implementation Details
	Future Improvements

	Automatic Machine Generation
	Static Heap Image
	Machine Generation Configurations
	Machine Generator Functionality
	Heap Initialization Procedure

	Conclusions
	Intermediate Representation Specification
	Grammar
	Opcodes

	Yet Another Tree Rewriting Tool
	Specifications
	Implementation
	Ring Extensions
	Default Rules
	Non-Terminal Templates
	Non-Terminal Inlining

